- -

Low-cost modular devices for on-road vehicle detection and characterisation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Low-cost modular devices for on-road vehicle detection and characterisation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Poza-Lujan, Jose-Luis es_ES
dc.contributor.author Uribe-Chavert, Pedro es_ES
dc.contributor.author Posadas-Yagüe, Juan-Luis es_ES
dc.date.accessioned 2023-12-18T19:05:29Z
dc.date.available 2023-12-18T19:05:29Z
dc.date.issued 2023-06 es_ES
dc.identifier.issn 0929-5585 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200864
dc.description.abstract [EN] Detecting and characterising vehicles is one of the purposes of embedded systems used in intelligent environments. An analysis of a vehicle¿s characteristics can reveal inappropriate or dangerous behaviour. This detection makes it possible to sanction or notify emergency services to take early and practical actions. Vehicle detection and characterisation systems employ complex sensors such as video cameras, especially in urban environments. These sensors provide high precision and performance, although the price and computational requirements are proportional to their accuracy. These sensors offer high accuracy, but the price and computational requirements are directly proportional to their performance. This article introduces a system based on modular devices that is economical and has a low computational cost. These devices use ultrasonic sensors to detect the speed and length of vehicles. The measurement accuracy is improved through the collaboration of the device modules. The experiments were performed using multiple modules oriented to different angles. This module is coupled with another specifically designed to detect distance using previous modules¿ speed and length data. The collaboration between different modules reduces the speed relative error ranges from 1 to 5%, depending on the angle configuration used in the modules. es_ES
dc.description.sponsorship This work was by the Spanish Science and Innovation Ministry: CICYT project PRESECREL: "Models and platforms for predictable, secure and reliable industrial information technology systems" PID2021-124502OB-C41. Funding for open access charge: CRUE-Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Design Automation for Embedded Systems es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Vehicle detection es_ES
dc.subject Low-cost devices es_ES
dc.subject Distributed systems es_ES
dc.subject Edge computation es_ES
dc.subject Characterisation systems es_ES
dc.subject Intelligent environments es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Low-cost modular devices for on-road vehicle detection and characterisation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10617-023-09270-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2021-124502OB-C41//MODELOS Y PLATAFORMAS PARA SISTEMA INFORMÁTICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Poza-Lujan, J.; Uribe-Chavert, P.; Posadas-Yagüe, J. (2023). Low-cost modular devices for on-road vehicle detection and characterisation. Design Automation for Embedded Systems. 27(1-2):85-102. https://doi.org/10.1007/s10617-023-09270-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10617-023-09270-y es_ES
dc.description.upvformatpinicio 85 es_ES
dc.description.upvformatpfin 102 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 1-2 es_ES
dc.relation.pasarela S\494811 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Broy M, Cengarle MV, Geisberger E (2012) Cyber-physical systems: imminent challenges. In: Monterey workshop, pp 1–28. Springer es_ES
dc.description.references Wolf W (2009) Cyber-physical systems. IEEE Ann Hist Comput 42(03):88–89 es_ES
dc.description.references Serpanos D (2018) The cyber-physical systems revolution. Computer 51(3):70–73 es_ES
dc.description.references Hichri Y, Dahi S, Fathallah H (2021) Candidate architectures for emerging IOV: a survey and comparative study. Des Autom Embed Syst 25(4):237–263 es_ES
dc.description.references Canas V, Garcia A, de Las-Morenas J, Blanco J (2019) Modular and reconfigurable platform as new philosophy for the development of updatable vehicular electronics. Rev Iberoam de Automática e Inform Industr 16(2):200–211 es_ES
dc.description.references Asselin-Miller N, Biedka M, Gibson G, Kirsch F, Hill N, White B, Uddin K (2016) Study on the deployment of c-its in Europe: final report. Rep for DG MOVE MOVE/C 3:2014–794 es_ES
dc.description.references Corli A, Malaguti L (2021) Wave fronts in traffic flows and crowds dynamics. In: Cicognani M, Del Santo D, Parmeggiani A, Reissig M (eds) Anomalies in partial differential equations. Springer, Cham, pp 167–189 es_ES
dc.description.references Maity S, Bhattacharyya A, Singh PK, Kumar M, Sarkar R (2022) Last decade in vehicle detection and classification: a comprehensive survey. Arch Comput Methods Eng 28:1–38 es_ES
dc.description.references Sun Z, Bebis G, Miller R (2004) On-road vehicle detection using optical sensors: a review. In: Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No. 04TH8749), pp 585–590. IEEE es_ES
dc.description.references Li W, Li H, Wu Q, Chen X, Ngan KN (2019) Simultaneously detecting and counting dense vehicles from drone images. IEEE Trans Industr Electron 66(12):9651–9662 es_ES
dc.description.references Messoussi O, Magalhães FGd, Lamarre F, Perreault F, Sogoba I, Bilodeau G-A, Nicolescu G (2021) Vehicle detection and tracking from surveillance cameras in Urban scenes. In: International symposium on visual computing, pp 191–202. Springer es_ES
dc.description.references Lozano Dominguez JM, Mateo Sanguino TJ (2019) Review on v2x, i2x, and p2x communications and their applications: a comprehensive analysis over time. Sensors 19(12):2756 es_ES
dc.description.references Qian X, Hao L (2020) Performance analysis of cooperative sensing over time-correlated Rayleigh channels in vehicular environments. Electronics 9(6):1004 es_ES
dc.description.references Hidalgo C, Marcano M, Fernandez G, Perez J (2020) Cooperative maneuvers applied to automated vehicles in real and virtual environments. Rev Iberoam de Autom e Inform industr 17(1):56–65 es_ES
dc.description.references Scaglia G, Serrano ME, Albertos Pérez P (2020) Control de trayectorias basado en álgebra lineal. Rev Iberoam de Autom e Inform industr 17(4):344–353 es_ES
dc.description.references Chen Z, Wu C, Huang Z, Lyu N, Hu Z, Zhong M, Cheng Y, Ran B (2017) Dangerous driving behavior detection using video-extracted vehicle trajectory histograms. J Intell Transport Syst 21(5):409–421 es_ES
dc.description.references Celik T, Kusetogullari H (2009) Solar-powered automated road surveillance system for speed violation detection. IEEE Trans Industr Electron 57(9):3216–3227 es_ES
dc.description.references de Oliveira M, Teixeira R, Sousa R, Tavares Gonçalves EJ, et al (2021) An agent-based simulation to explore communication in a system to control urban traffic with smart traffic lights es_ES
dc.description.references Adarsh S, Kaleemuddin SM, Bose D, Ramachandran K (2016) Performance comparison of infrared and ultrasonic sensors for obstacles of different materials in vehicle/robot navigation applications. IOP Conf Ser Mater Sci Eng 149:012141 es_ES
dc.description.references Appiah O, Quayson E, Opoku E (2020) Ultrasonic sensor based traffic information acquisition system; a cheaper alternative for its application in developing countries. Sci Afr 9:00487 es_ES
dc.description.references Matsuo T, Kaneko Y, Matano, M (1999) Introduction of intelligent vehicle detection sensors. In: Proceedings 199 IEEE/IEEJ/JSAI international conference on intelligent transportation systems (Cat. No. 99TH8383), pp 709–713. IEEE es_ES
dc.description.references Jo Y, Choi J, Jung I (2014) Traffic information acquisition system with ultrasonic sensors in wireless sensor networks. Int J Distrib Sens Netw 10(5):961073 es_ES
dc.description.references Li SE, Li G, Yu J, Liu C, Cheng B, Wang J, Li K (2018) Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles. Mech Syst Signal Process 98:173–189 es_ES
dc.description.references Jeon S, Kwon E, Jung I (2014) Traffic measurement on multiple drive lanes with wireless ultrasonic sensors. Sensors 14(12):22891–22906 es_ES
dc.description.references Stiawan R, Kusumadjati A, Aminah NS, Djamal M, Viridi S (2019) An ultrasonic sensor system for vehicle detection application. J Phys Conf Ser 1204:012017 es_ES
dc.description.references Marwedel P (2021) Embedded system design: embedded systems foundations of cyber-physical systems, and the internet of things. Springer, New York es_ES
dc.description.references Swanson DC (2011) Signal Processing for intelligent sensor systems with MATLAB. CRC Press, Boca Raton es_ES
dc.description.references Bae I, Ji U (2019) Outlier detection and smoothing process for water level data measured by ultrasonic sensor in stream flows. Water 11(5):951 es_ES
dc.description.references Zhao H, Wang Z (2011) Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended Kalman filter for data fusion. IEEE Sens J 12(5):943–953 es_ES
dc.description.references Ting J-A, Theodorou E, Schaal S (2007) Learning an outlier-robust Kalman filter. Eur Conf Mach Learn 25:748–756 es_ES
dc.description.references Johnson NL (1961) A simple theoretical approach to cumulative sum control charts. J Am Stat Assoc 56(296):835–840 es_ES
dc.description.references Pierre R.Bertrand, Hadouni D (2015) Change point detection by filtered derivative with p-value : choice of the extra-parameters. Working paper or preprint. https://hal.science/hal-01240885 es_ES
dc.description.references Găşpăresc G, Gontean A (2014) Performance evaluation of ultrasonic sensors accuracy in distance measurement. In: 2014 11th International symposium on electronics and telecommunications (ISETC), pp 1–4. IEEE es_ES
dc.description.references Tsitsiklis JN (1988) Decentralized detection by a large number of sensors. Math Control Signals Syst 1(2):167–182 es_ES
dc.description.references Koldobsky A (1998) Second derivative test for intersection bodies. Adv Math 136(1):15–25 es_ES
dc.description.references Lee M, Newman RE, Latchman HA, Katar S, Yonge L (2003) Homeplug 1.0 powerline communication lans-protocol description and performance results. Int J Commun Syst 16(5):447–473 es_ES
dc.description.references Poza-Lujan JL, Uribe-Chavert P, Sáenz-Peñafiel J-J, Posadas-Yagüe J-L (2021) Distributing and processing data from the edge. a case study with ultrasound sensor modules. Int Symp Distrib Comput Artif Intell 95:190–199 es_ES
dc.description.references Marko D, Hrubỳ D (2020) Distance measuring in vineyard row using ultrasonic and optical sensors. In: Proceeding of 22 Nd international conference of Young scientists. Praha: Česká Zemědělská univerzita, pp 194–204 es_ES
dc.description.references Semiconductors P (2000) The i2c-bus specification. Philips Semicond 9397(750):00954 es_ES
dc.description.references Huh J-H, Seo K (2017) An indoor location-based control system using Bluetooth beacons for IoT systems. Sensors 17(12):2917 es_ES
dc.description.references Gandhi MM, Solanki DS, Daptardar RS, Baloorkar NS (2020) Smart control of traffic light using artificial intelligence. In:2020 5th IEEE international conference on recent advances and innovations in engineering (ICRAIE), pp 1–6. IEEE es_ES
dc.description.references Uribe Chavert P, Gandhi MM (2022) Vehicle speed and length detector with ultrasound sensor and different angles. https://doi.org/10.5281/zenodo.7215268.‘github.com/puch18ou/’ es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem