Mostrar el registro sencillo del ítem
dc.contributor.author | Poza-Lujan, Jose-Luis | es_ES |
dc.contributor.author | Uribe-Chavert, Pedro | es_ES |
dc.contributor.author | Posadas-Yagüe, Juan-Luis | es_ES |
dc.date.accessioned | 2023-12-18T19:05:29Z | |
dc.date.available | 2023-12-18T19:05:29Z | |
dc.date.issued | 2023-06 | es_ES |
dc.identifier.issn | 0929-5585 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/200864 | |
dc.description.abstract | [EN] Detecting and characterising vehicles is one of the purposes of embedded systems used in intelligent environments. An analysis of a vehicle¿s characteristics can reveal inappropriate or dangerous behaviour. This detection makes it possible to sanction or notify emergency services to take early and practical actions. Vehicle detection and characterisation systems employ complex sensors such as video cameras, especially in urban environments. These sensors provide high precision and performance, although the price and computational requirements are proportional to their accuracy. These sensors offer high accuracy, but the price and computational requirements are directly proportional to their performance. This article introduces a system based on modular devices that is economical and has a low computational cost. These devices use ultrasonic sensors to detect the speed and length of vehicles. The measurement accuracy is improved through the collaboration of the device modules. The experiments were performed using multiple modules oriented to different angles. This module is coupled with another specifically designed to detect distance using previous modules¿ speed and length data. The collaboration between different modules reduces the speed relative error ranges from 1 to 5%, depending on the angle configuration used in the modules. | es_ES |
dc.description.sponsorship | This work was by the Spanish Science and Innovation Ministry: CICYT project PRESECREL: "Models and platforms for predictable, secure and reliable industrial information technology systems" PID2021-124502OB-C41. Funding for open access charge: CRUE-Universitat Politecnica de Valencia. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Design Automation for Embedded Systems | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Vehicle detection | es_ES |
dc.subject | Low-cost devices | es_ES |
dc.subject | Distributed systems | es_ES |
dc.subject | Edge computation | es_ES |
dc.subject | Characterisation systems | es_ES |
dc.subject | Intelligent environments | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Low-cost modular devices for on-road vehicle detection and characterisation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10617-023-09270-y | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PID2021-124502OB-C41//MODELOS Y PLATAFORMAS PARA SISTEMA INFORMÁTICOS INDUSTRIALES PREDECIBLES, SEGUROS Y CONFIABLES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Poza-Lujan, J.; Uribe-Chavert, P.; Posadas-Yagüe, J. (2023). Low-cost modular devices for on-road vehicle detection and characterisation. Design Automation for Embedded Systems. 27(1-2):85-102. https://doi.org/10.1007/s10617-023-09270-y | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s10617-023-09270-y | es_ES |
dc.description.upvformatpinicio | 85 | es_ES |
dc.description.upvformatpfin | 102 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 1-2 | es_ES |
dc.relation.pasarela | S\494811 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Broy M, Cengarle MV, Geisberger E (2012) Cyber-physical systems: imminent challenges. In: Monterey workshop, pp 1–28. Springer | es_ES |
dc.description.references | Wolf W (2009) Cyber-physical systems. IEEE Ann Hist Comput 42(03):88–89 | es_ES |
dc.description.references | Serpanos D (2018) The cyber-physical systems revolution. Computer 51(3):70–73 | es_ES |
dc.description.references | Hichri Y, Dahi S, Fathallah H (2021) Candidate architectures for emerging IOV: a survey and comparative study. Des Autom Embed Syst 25(4):237–263 | es_ES |
dc.description.references | Canas V, Garcia A, de Las-Morenas J, Blanco J (2019) Modular and reconfigurable platform as new philosophy for the development of updatable vehicular electronics. Rev Iberoam de Automática e Inform Industr 16(2):200–211 | es_ES |
dc.description.references | Asselin-Miller N, Biedka M, Gibson G, Kirsch F, Hill N, White B, Uddin K (2016) Study on the deployment of c-its in Europe: final report. Rep for DG MOVE MOVE/C 3:2014–794 | es_ES |
dc.description.references | Corli A, Malaguti L (2021) Wave fronts in traffic flows and crowds dynamics. In: Cicognani M, Del Santo D, Parmeggiani A, Reissig M (eds) Anomalies in partial differential equations. Springer, Cham, pp 167–189 | es_ES |
dc.description.references | Maity S, Bhattacharyya A, Singh PK, Kumar M, Sarkar R (2022) Last decade in vehicle detection and classification: a comprehensive survey. Arch Comput Methods Eng 28:1–38 | es_ES |
dc.description.references | Sun Z, Bebis G, Miller R (2004) On-road vehicle detection using optical sensors: a review. In: Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No. 04TH8749), pp 585–590. IEEE | es_ES |
dc.description.references | Li W, Li H, Wu Q, Chen X, Ngan KN (2019) Simultaneously detecting and counting dense vehicles from drone images. IEEE Trans Industr Electron 66(12):9651–9662 | es_ES |
dc.description.references | Messoussi O, Magalhães FGd, Lamarre F, Perreault F, Sogoba I, Bilodeau G-A, Nicolescu G (2021) Vehicle detection and tracking from surveillance cameras in Urban scenes. In: International symposium on visual computing, pp 191–202. Springer | es_ES |
dc.description.references | Lozano Dominguez JM, Mateo Sanguino TJ (2019) Review on v2x, i2x, and p2x communications and their applications: a comprehensive analysis over time. Sensors 19(12):2756 | es_ES |
dc.description.references | Qian X, Hao L (2020) Performance analysis of cooperative sensing over time-correlated Rayleigh channels in vehicular environments. Electronics 9(6):1004 | es_ES |
dc.description.references | Hidalgo C, Marcano M, Fernandez G, Perez J (2020) Cooperative maneuvers applied to automated vehicles in real and virtual environments. Rev Iberoam de Autom e Inform industr 17(1):56–65 | es_ES |
dc.description.references | Scaglia G, Serrano ME, Albertos Pérez P (2020) Control de trayectorias basado en álgebra lineal. Rev Iberoam de Autom e Inform industr 17(4):344–353 | es_ES |
dc.description.references | Chen Z, Wu C, Huang Z, Lyu N, Hu Z, Zhong M, Cheng Y, Ran B (2017) Dangerous driving behavior detection using video-extracted vehicle trajectory histograms. J Intell Transport Syst 21(5):409–421 | es_ES |
dc.description.references | Celik T, Kusetogullari H (2009) Solar-powered automated road surveillance system for speed violation detection. IEEE Trans Industr Electron 57(9):3216–3227 | es_ES |
dc.description.references | de Oliveira M, Teixeira R, Sousa R, Tavares Gonçalves EJ, et al (2021) An agent-based simulation to explore communication in a system to control urban traffic with smart traffic lights | es_ES |
dc.description.references | Adarsh S, Kaleemuddin SM, Bose D, Ramachandran K (2016) Performance comparison of infrared and ultrasonic sensors for obstacles of different materials in vehicle/robot navigation applications. IOP Conf Ser Mater Sci Eng 149:012141 | es_ES |
dc.description.references | Appiah O, Quayson E, Opoku E (2020) Ultrasonic sensor based traffic information acquisition system; a cheaper alternative for its application in developing countries. Sci Afr 9:00487 | es_ES |
dc.description.references | Matsuo T, Kaneko Y, Matano, M (1999) Introduction of intelligent vehicle detection sensors. In: Proceedings 199 IEEE/IEEJ/JSAI international conference on intelligent transportation systems (Cat. No. 99TH8383), pp 709–713. IEEE | es_ES |
dc.description.references | Jo Y, Choi J, Jung I (2014) Traffic information acquisition system with ultrasonic sensors in wireless sensor networks. Int J Distrib Sens Netw 10(5):961073 | es_ES |
dc.description.references | Li SE, Li G, Yu J, Liu C, Cheng B, Wang J, Li K (2018) Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles. Mech Syst Signal Process 98:173–189 | es_ES |
dc.description.references | Jeon S, Kwon E, Jung I (2014) Traffic measurement on multiple drive lanes with wireless ultrasonic sensors. Sensors 14(12):22891–22906 | es_ES |
dc.description.references | Stiawan R, Kusumadjati A, Aminah NS, Djamal M, Viridi S (2019) An ultrasonic sensor system for vehicle detection application. J Phys Conf Ser 1204:012017 | es_ES |
dc.description.references | Marwedel P (2021) Embedded system design: embedded systems foundations of cyber-physical systems, and the internet of things. Springer, New York | es_ES |
dc.description.references | Swanson DC (2011) Signal Processing for intelligent sensor systems with MATLAB. CRC Press, Boca Raton | es_ES |
dc.description.references | Bae I, Ji U (2019) Outlier detection and smoothing process for water level data measured by ultrasonic sensor in stream flows. Water 11(5):951 | es_ES |
dc.description.references | Zhao H, Wang Z (2011) Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended Kalman filter for data fusion. IEEE Sens J 12(5):943–953 | es_ES |
dc.description.references | Ting J-A, Theodorou E, Schaal S (2007) Learning an outlier-robust Kalman filter. Eur Conf Mach Learn 25:748–756 | es_ES |
dc.description.references | Johnson NL (1961) A simple theoretical approach to cumulative sum control charts. J Am Stat Assoc 56(296):835–840 | es_ES |
dc.description.references | Pierre R.Bertrand, Hadouni D (2015) Change point detection by filtered derivative with p-value : choice of the extra-parameters. Working paper or preprint. https://hal.science/hal-01240885 | es_ES |
dc.description.references | Găşpăresc G, Gontean A (2014) Performance evaluation of ultrasonic sensors accuracy in distance measurement. In: 2014 11th International symposium on electronics and telecommunications (ISETC), pp 1–4. IEEE | es_ES |
dc.description.references | Tsitsiklis JN (1988) Decentralized detection by a large number of sensors. Math Control Signals Syst 1(2):167–182 | es_ES |
dc.description.references | Koldobsky A (1998) Second derivative test for intersection bodies. Adv Math 136(1):15–25 | es_ES |
dc.description.references | Lee M, Newman RE, Latchman HA, Katar S, Yonge L (2003) Homeplug 1.0 powerline communication lans-protocol description and performance results. Int J Commun Syst 16(5):447–473 | es_ES |
dc.description.references | Poza-Lujan JL, Uribe-Chavert P, Sáenz-Peñafiel J-J, Posadas-Yagüe J-L (2021) Distributing and processing data from the edge. a case study with ultrasound sensor modules. Int Symp Distrib Comput Artif Intell 95:190–199 | es_ES |
dc.description.references | Marko D, Hrubỳ D (2020) Distance measuring in vineyard row using ultrasonic and optical sensors. In: Proceeding of 22 Nd international conference of Young scientists. Praha: Česká Zemědělská univerzita, pp 194–204 | es_ES |
dc.description.references | Semiconductors P (2000) The i2c-bus specification. Philips Semicond 9397(750):00954 | es_ES |
dc.description.references | Huh J-H, Seo K (2017) An indoor location-based control system using Bluetooth beacons for IoT systems. Sensors 17(12):2917 | es_ES |
dc.description.references | Gandhi MM, Solanki DS, Daptardar RS, Baloorkar NS (2020) Smart control of traffic light using artificial intelligence. In:2020 5th IEEE international conference on recent advances and innovations in engineering (ICRAIE), pp 1–6. IEEE | es_ES |
dc.description.references | Uribe Chavert P, Gandhi MM (2022) Vehicle speed and length detector with ultrasound sensor and different angles. https://doi.org/10.5281/zenodo.7215268.‘github.com/puch18ou/’ | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |