- -

Automatic segmentation of Caenorhabditis elegans skeletons in worm aggregations using improved U-Net in low-resolution image sequences

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic segmentation of Caenorhabditis elegans skeletons in worm aggregations using improved U-Net in low-resolution image sequences

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Layana-Castro, Pablo Emmanuel es_ES
dc.contributor.author García-Garví, Antonio es_ES
dc.contributor.author Sánchez Salmerón, Antonio José es_ES
dc.date.accessioned 2023-12-18T19:06:38Z
dc.date.available 2023-12-18T19:06:38Z
dc.date.issued 2023-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/200870
dc.description.abstract [EN] Pose estimation of C. elegans in image sequences is challenging and even more difficult in low-resolution images. Problems range from occlusions, loss of worm identity, and overlaps to aggregations that are too complex or difficult to resolve, even for the human eye. Neural networks, on the other hand, have shown good results in both low-resolution and high-resolution images. However, training in a neural network model requires a very large and balanced dataset, which is sometimes impossible or too expensive to obtain. In this article, a novel method for predicting C. elegans poses in cases of multi-worm aggregation and aggregation with noise is proposed. To solve this problem we use an improved U-Net model capable of obtaining images of the next aggregated worm posture. This neural network model was trained/validated using a custom-generated dataset with a synthetic image simulator. Subsequently, tested with a dataset of real images. The results obtained were greater than 75% in precision and 0.65 with Intersection over Union (IoU) values. es_ES
dc.description.sponsorship Prof. Antonio-Jose Sanchez-Salmeron; Pablo E. Layana Castro; Antonio Garcia Garvi were supported by Ministerio de Ciencia, Innovacion y Universidades [RTI2018-094312-B-I00 (European FEDER funds); FPI PRE2019-088214; FPU20/02639]. This work was supported by Universitat Politecnica de Valencia ["Funding for open access charge: Universitat Politecnica de Valencia"]. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Heliyon es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Caenorhabditis elegans es_ES
dc.subject Skeletonizing es_ES
dc.subject Synthetic dataset es_ES
dc.subject Low-resolution image es_ES
dc.subject U-Net es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Automatic segmentation of Caenorhabditis elegans skeletons in worm aggregations using improved U-Net in low-resolution image sequences es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.heliyon.2023.e14715 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094312-B-I00/ES/MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PRE2019-088214//AYUDA PREDOCTORAL AEI-LAYANA CASTRO. PROYECTO: MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ //FPU20%2F02639//Diseño, desarrollo y evaluación de técnicas basadas en visión artificial para automatización de experimentos con C. elegans/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Layana-Castro, PE.; García-Garví, A.; Sánchez Salmerón, AJ. (2023). Automatic segmentation of Caenorhabditis elegans skeletons in worm aggregations using improved U-Net in low-resolution image sequences. Heliyon. 9(4):1-12. https://doi.org/10.1016/j.heliyon.2023.e14715 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.heliyon.2023.e14715 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2405-8440 es_ES
dc.identifier.pmid 37025880 es_ES
dc.identifier.pmcid PMC10070602 es_ES
dc.relation.pasarela S\486929 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder MINISTERIO DE UNIVERSIDADES E INVESTIGACION es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem