Mostrar el registro sencillo del ítem
dc.contributor.author | Layana-Castro, Pablo Emmanuel | es_ES |
dc.contributor.author | García-Garví, Antonio | es_ES |
dc.contributor.author | Sánchez Salmerón, Antonio José | es_ES |
dc.date.accessioned | 2023-12-18T19:06:38Z | |
dc.date.available | 2023-12-18T19:06:38Z | |
dc.date.issued | 2023-04 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/200870 | |
dc.description.abstract | [EN] Pose estimation of C. elegans in image sequences is challenging and even more difficult in low-resolution images. Problems range from occlusions, loss of worm identity, and overlaps to aggregations that are too complex or difficult to resolve, even for the human eye. Neural networks, on the other hand, have shown good results in both low-resolution and high-resolution images. However, training in a neural network model requires a very large and balanced dataset, which is sometimes impossible or too expensive to obtain. In this article, a novel method for predicting C. elegans poses in cases of multi-worm aggregation and aggregation with noise is proposed. To solve this problem we use an improved U-Net model capable of obtaining images of the next aggregated worm posture. This neural network model was trained/validated using a custom-generated dataset with a synthetic image simulator. Subsequently, tested with a dataset of real images. The results obtained were greater than 75% in precision and 0.65 with Intersection over Union (IoU) values. | es_ES |
dc.description.sponsorship | Prof. Antonio-Jose Sanchez-Salmeron; Pablo E. Layana Castro; Antonio Garcia Garvi were supported by Ministerio de Ciencia, Innovacion y Universidades [RTI2018-094312-B-I00 (European FEDER funds); FPI PRE2019-088214; FPU20/02639]. This work was supported by Universitat Politecnica de Valencia ["Funding for open access charge: Universitat Politecnica de Valencia"]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Heliyon | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Caenorhabditis elegans | es_ES |
dc.subject | Skeletonizing | es_ES |
dc.subject | Synthetic dataset | es_ES |
dc.subject | Low-resolution image | es_ES |
dc.subject | U-Net | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Automatic segmentation of Caenorhabditis elegans skeletons in worm aggregations using improved U-Net in low-resolution image sequences | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.heliyon.2023.e14715 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094312-B-I00/ES/MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PRE2019-088214//AYUDA PREDOCTORAL AEI-LAYANA CASTRO. PROYECTO: MONITORIZACION AVANZADA DE COMPORTAMIENTOS DE CAENORHABDITIS ELEGANS, BASADA EN VISION ACTIVA, PARA ANALIZAR FUNCION COGNITIVA Y ENVEJECIMIENTO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ //FPU20%2F02639//Diseño, desarrollo y evaluación de técnicas basadas en visión artificial para automatización de experimentos con C. elegans/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Layana-Castro, PE.; García-Garví, A.; Sánchez Salmerón, AJ. (2023). Automatic segmentation of Caenorhabditis elegans skeletons in worm aggregations using improved U-Net in low-resolution image sequences. Heliyon. 9(4):1-12. https://doi.org/10.1016/j.heliyon.2023.e14715 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.heliyon.2023.e14715 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2405-8440 | es_ES |
dc.identifier.pmid | 37025880 | es_ES |
dc.identifier.pmcid | PMC10070602 | es_ES |
dc.relation.pasarela | S\486929 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | MINISTERIO DE UNIVERSIDADES E INVESTIGACION | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |