Mostrar el registro sencillo del ítem
dc.contributor.author | Salas-Molina, Francisco | es_ES |
dc.date.accessioned | 2023-12-26T19:02:53Z | |
dc.date.available | 2023-12-26T19:02:53Z | |
dc.date.issued | 2019-06 | es_ES |
dc.identifier.issn | 0305-0548 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/201125 | |
dc.description.abstract | [EN] Organizations use cash management models to control balances to both avoid overdrafts and obtain a profit from short-term investments. Most management models are based on control bounds which are derived from the assumption of a particular cash flow probability distribution. In this paper, we relax this strong assumption to fit cash management models to data by means of stochastic and linear programming. We also introduce ensembles of random cash management models which are built by randomly selecting a subsequence of the original cash flow data set. We illustrate our approach by means of a real case study showing that a small random sample of data is enough to fit sufficiently good bound-based models. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computers & Operations Research | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Stochastic programming | es_ES |
dc.subject | Data-driven models | es_ES |
dc.subject | Ensembles | es_ES |
dc.subject | Control bounds | es_ES |
dc.subject.classification | ECONOMIA FINANCIERA Y CONTABILIDAD | es_ES |
dc.title | Fitting random cash management models to data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cor.2018.04.007 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Salas-Molina, F. (2019). Fitting random cash management models to data. Computers & Operations Research. 106:298-306. https://doi.org/10.1016/j.cor.2018.04.007 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cor.2018.04.007 | es_ES |
dc.description.upvformatpinicio | 298 | es_ES |
dc.description.upvformatpfin | 306 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 106 | es_ES |
dc.relation.pasarela | S\460775 | es_ES |