López García, F.; Valiente González, JM.; Escriche Roberto, MI.; Juan-Borras, MDS.; Visquert Fas, M.; Atienza-Vanacloig, V.; Agustí-Melchor, M. (2023). Classification of Honey Pollens with ImageNet Neural Networks. Lecture Notes in Computer Science. 14185:192-200. https://doi.org/10.1007/978-3-031-44240-7_19
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/201636
Título:
|
Classification of Honey Pollens with ImageNet Neural Networks
|
Autor:
|
López García, Fernando
Valiente González, José Miguel
Escriche Roberto, Mª Isabel
Juan-Borras, María del Sol
Visquert Fas, Mario
Atienza-Vanacloig, Vicente
Agustí-Melchor, Manuel
|
Entidad UPV:
|
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
|
Fecha difusión:
|
|
Resumen:
|
[EN] The classification of honey pollen grains is performed in order to clas-
sify honey according to its botanical origin, which is of great importance in terms
of marketing. This visual work is currently done by human ...[+]
[EN] The classification of honey pollen grains is performed in order to clas-
sify honey according to its botanical origin, which is of great importance in terms
of marketing. This visual work is currently done by human specialists counting
and classifying the pollen grains in microscopic images. This is a hard, time-
consuming, and subject to observer variability task. Thus, automated methods are
required to overcome the limitations of the conventional procedure. This paper
deals with the automatic classification of honey pollens using five representa-
tive Neural Networks coming from the ImageNet Challenge: VGG16, VGG19,
ResNet50, InceptionV3 and Xception. The ground truth is composed of 9983 sam-
ples of 16 different types of pollens corresponding to citrus and rosemary pollens
and its companions. The best result was obtained with the InceptionV3 network,
achieving an accuracy of 98.15%, that outperforms the results obtained in previous
works.
[-]
|
Palabras clave:
|
Pollen Classification
,
ImageNet Challenge
,
Deep Learning
,
Convolutional Neural Networks
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
Lecture Notes in Computer Science. (issn:
0302-9743
)
|
DOI:
|
10.1007/978-3-031-44240-7_19
|
Editorial:
|
Springer-Verlag
|
Versión del editor:
|
https://doi.org/10.1007/978-3-031-44240-7_19
|
Serie:
|
Lecture Notes in Computer Science
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106800RB-I00/ES/ANALISIS POLINICO AUTOMATICO EMPLEANDO REDES NEURONALES CONVOLUCIONALES: APLICACION A LA CLASIFICACION MONOFLORAL DE LA MIEL/
info:eu-repo/grantAgreement/GVA//AGROALNEXT%2F2022%2F043 /
|
Agradecimientos:
|
This work is part of the project PID2019-106800RB-I00 (2019) of the Ministry of Science and Innovation (MCIN), State Research Agency MCIN/AEI/https://doi.org/10.13039/501100011033/. It is also part of the AGROALNEXT/2022/043 ...[+]
This work is part of the project PID2019-106800RB-I00 (2019) of the Ministry of Science and Innovation (MCIN), State Research Agency MCIN/AEI/https://doi.org/10.13039/501100011033/. It is also part of the AGROALNEXT/2022/043 project, financed by theGeneralitat Valenciana, the Next Generation European Union and the Recovery, Transformation and Resilience Plan of the Government of Spain.
[-]
|
Tipo:
|
Artículo
Capítulo de libro
|