- -

Support Vector Regression for Mobile Target Localization in Indoor Environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Support Vector Regression for Mobile Target Localization in Indoor Environments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jondhale, Satish R. es_ES
dc.contributor.author Mohan, Vijay es_ES
dc.contributor.author Sharma, Bharat Bhushan es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Athawale, Shashikant V. es_ES
dc.date.accessioned 2024-01-11T19:02:03Z
dc.date.available 2024-01-11T19:02:03Z
dc.date.issued 2022-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/201813
dc.description.abstract [EN] Trilateration-based target localization using received signal strength (RSS) in a wireless sensor network (WSN) generally yields inaccurate location estimates due to high fluctuations in RSS measurements in indoor environments. Improving the localization accuracy in RSS-based systems has long been the focus of a substantial amount of research. This paper proposes two range-free algorithms based on RSS measurements, namely support vector regression (SVR) and SVR + Kalman filter (KF). Unlike trilateration, the proposed SVR-based localization scheme can directly estimate target locations using field measurements without relying on the computation of distances. Unlike other state-of-the-art localization and tracking (L&T) schemes such as the generalized regression neural network (GRNN), SVR localization architecture needs only three RSS measurements to locate a mobile target. Furthermore, the SVR based localization scheme was fused with a KF in order to gain further refinement in target location estimates. Rigorous simulations were carried out to test the localization efficacy of the proposed algorithms for noisy radio frequency (RF) channels and a dynamic target motion model. Benefiting from the good generalization ability of SVR, simulation results showed that the presented SVR-based localization algorithms demonstrate superior performance compared to trilateration- and GRNN-based localization schemes in terms of indoor localization performance. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Trilateration es_ES
dc.subject Received signal strength (RSS) es_ES
dc.subject Wireless sensor network (WSN) es_ES
dc.subject Localization and tracking (L&T) es_ES
dc.subject Support vector regression (SVR) es_ES
dc.subject Kalman filter (KF) es_ES
dc.subject Generalized regression neural network (GRNN) es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Support Vector Regression for Mobile Target Localization in Indoor Environments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s22010358 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Jondhale, SR.; Mohan, V.; Sharma, BB.; Lloret, J.; Athawale, SV. (2022). Support Vector Regression for Mobile Target Localization in Indoor Environments. Sensors. 22(1). https://doi.org/10.3390/s22010358 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s22010358 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.relation.pasarela S\506768 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem