Mostrar el registro sencillo del ítem
dc.contributor.author | Jondhale, Satish R. | es_ES |
dc.contributor.author | Mohan, Vijay | es_ES |
dc.contributor.author | Sharma, Bharat Bhushan | es_ES |
dc.contributor.author | Lloret, Jaime | es_ES |
dc.contributor.author | Athawale, Shashikant V. | es_ES |
dc.date.accessioned | 2024-01-11T19:02:03Z | |
dc.date.available | 2024-01-11T19:02:03Z | |
dc.date.issued | 2022-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/201813 | |
dc.description.abstract | [EN] Trilateration-based target localization using received signal strength (RSS) in a wireless sensor network (WSN) generally yields inaccurate location estimates due to high fluctuations in RSS measurements in indoor environments. Improving the localization accuracy in RSS-based systems has long been the focus of a substantial amount of research. This paper proposes two range-free algorithms based on RSS measurements, namely support vector regression (SVR) and SVR + Kalman filter (KF). Unlike trilateration, the proposed SVR-based localization scheme can directly estimate target locations using field measurements without relying on the computation of distances. Unlike other state-of-the-art localization and tracking (L&T) schemes such as the generalized regression neural network (GRNN), SVR localization architecture needs only three RSS measurements to locate a mobile target. Furthermore, the SVR based localization scheme was fused with a KF in order to gain further refinement in target location estimates. Rigorous simulations were carried out to test the localization efficacy of the proposed algorithms for noisy radio frequency (RF) channels and a dynamic target motion model. Benefiting from the good generalization ability of SVR, simulation results showed that the presented SVR-based localization algorithms demonstrate superior performance compared to trilateration- and GRNN-based localization schemes in terms of indoor localization performance. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Trilateration | es_ES |
dc.subject | Received signal strength (RSS) | es_ES |
dc.subject | Wireless sensor network (WSN) | es_ES |
dc.subject | Localization and tracking (L&T) | es_ES |
dc.subject | Support vector regression (SVR) | es_ES |
dc.subject | Kalman filter (KF) | es_ES |
dc.subject | Generalized regression neural network (GRNN) | es_ES |
dc.subject.classification | INGENIERÍA TELEMÁTICA | es_ES |
dc.title | Support Vector Regression for Mobile Target Localization in Indoor Environments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s22010358 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia | es_ES |
dc.description.bibliographicCitation | Jondhale, SR.; Mohan, V.; Sharma, BB.; Lloret, J.; Athawale, SV. (2022). Support Vector Regression for Mobile Target Localization in Indoor Environments. Sensors. 22(1). https://doi.org/10.3390/s22010358 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s22010358 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.relation.pasarela | S\506768 | es_ES |