- -

Numerical approximations with tensor-based techniques for high-dimensional problems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Numerical approximations with tensor-based techniques for high-dimensional problems

Show full item record

Mora Jiménez, M. (2023). Numerical approximations with tensor-based techniques for high-dimensional problems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202604

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/202604

Files in this item

Item Metadata

Title: Numerical approximations with tensor-based techniques for high-dimensional problems
Author: Mora Jiménez, María
Director(s): Conejero Casares, José Alberto Falcó Montesinos, Antonio
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Read date / Event date:
2023-12-22
Issued date:
Abstract:
[ES] La idea de seguir una secuencia de pasos para lograr un resultado deseado es inherente a la naturaleza humana: desde que empezamos a andar, siguiendo una receta de cocina o aprendiendo un nuevo juego de cartas. Desde ...[+]


[CA] La idea de seguir una seqüència de passos per a aconseguir un resultat desitjat és inherent a la naturalesa humana: des que comencem a caminar, seguint una recepta de cuina o aprenent un nou joc de cartes. Des de ...[+]


[EN] The idea of following a sequence of steps to achieve a desired result is inherent in human nature: from the moment we start walking, following a cooking recipe or learning a new card game. Since ancient times, this ...[+]
Subjects: High dimensional problems , Linear systems , Tensor decomposition , Matrix decomposition , Tensor algorithms , Numerical analysis , Partial differential equations , Greedy Rank One Updated Algorithm (GROU) , Proper Generalized Decomposition (PGD) , Descomposición tensorial , Sistemas lineales , Problemas de grandes dimensiones , Descomposición matricial , Algoritmos tensoriales , Análisis numérico
Copyrigths: Reserva de todos los derechos
DOI: 10.4995/Thesis/10251/202604
Publisher:
Universitat Politècnica de València
Project ID:
info:eu-repo/grantAgreement/GVA//ACIF%2F2020%2F269/ES/Subvenciones para la contratación de personal investigador de carácter predoctoral
Description: Tesis por compendio
Thanks:
María Mora Jiménez acknowledges funding from grant (ACIF/2020/269) funded by the Generalitat Valenciana and the European Social Found
Type: Tesis doctoral

recommendations

 

This item appears in the following Collection(s)

Show full item record