- -

Signature and Log-Signature for the Study of Empirical Distributions Generated with GANs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Signature and Log-Signature for the Study of Empirical Distributions Generated with GANs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author de Curtò, J. es_ES
dc.contributor.author de Zarzà, I. es_ES
dc.contributor.author Roig, Gemma es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.date.accessioned 2024-05-31T18:17:12Z
dc.date.available 2024-05-31T18:17:12Z
dc.date.issued 2023-05-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/204613
dc.description.abstract [EN] In this paper, we address the research gap in efficiently assessing Generative Adversarial Network (GAN) convergence and goodness of fit by introducing the application of the Signature Transform to measure similarity between image distributions. Specifically, we propose the novel use of Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) Signature, along with Log-Signature, as alternatives to existing methods such as Fréchet Inception Distance (FID) and Multi-Scale Structural Similarity Index Measure (MS-SSIM). Our approach offers advantages in terms of efficiency and effectiveness, providing a comprehensive understanding and extensive evaluations of GAN convergence and goodness of fit. Furthermore, we present innovative analytical measures based on statistics by means of Kruskal--Wallis to evaluate the goodness of fit of GAN sample distributions. Unlike existing GAN measures, which are based on deep neural networks and require extensive GPU computations, our approach significantly reduces computation time and is performed on the CPU while maintaining the same level of accuracy. Our results demonstrate the effectiveness of the proposed method in capturing the intrinsic structure of the generated samples, providing meaningful insights into GAN performance. Lastly, we evaluate our approach qualitatively using Principal Component Analysis (PCA) and adaptive t-Distributed Stochastic Neighbor Embedding (t-SNE) for data visualization, illustrating the plausibility of our method. es_ES
dc.description.sponsorship This work was supported by the HK Innovation and Technology Commission (InnoHK Project CIMDA). We acknowledge the support of R&D project PID2021-122580NB-I00, funded by MCIN/AEI/10.13039/501100011033 and ERDF. We thank the following funding sources from GOETHE-University Frankfurt am Main; DePP Dezentrale Plannung von Platoons im Straßengüterverkehr mit Hilfe einer KI auf Basis einzelner LKW and Center for Data Science & AI . es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject GAN es_ES
dc.subject FID es_ES
dc.subject Generative models es_ES
dc.subject Signature Transform es_ES
dc.subject PCA es_ES
dc.subject T-SNE es_ES
dc.subject Clustering es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Signature and Log-Signature for the Study of Empirical Distributions Generated with GANs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics12102192 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122580NB-I00/ES/SISTEMAS INTELIGENTES DE SENSORIZACION PARA ECOSISTEMAS, ESPACIOS URBANOS Y MOVILIDAD SOSTENIBLE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FEDER//ERDF 2014-2020/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation De Curtò, J.; De Zarzà, I.; Roig, G.; Tavares De Araujo Cesariny Calafate, CM. (2023). Signature and Log-Signature for the Study of Empirical Distributions Generated with GANs. Electronics. 12(10). https://doi.org/10.3390/electronics12102192 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics12102192 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\492453 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Goethe-Universität Frankfurt am Main es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem