Resumen:
|
[ES] El actual enfoque hacia la desfosilización de la industria química acentúa la necesidad de desarrollar procesos químicos medioambientalmente más sostenibles. El diseño de sistemas catalíticos en tándem para llevar a ...[+]
[ES] El actual enfoque hacia la desfosilización de la industria química acentúa la necesidad de desarrollar procesos químicos medioambientalmente más sostenibles. El diseño de sistemas catalíticos en tándem para llevar a cabo reacciones mecanísticamente desacopladas en un solo reactor, representa una estrategia prometedora para potencialmente reducir el tamaño de las instalaciones y alcanzar mayores eficiencias energéticas y económicas. El gas de síntesis y sus derivados directos C1 (metanol, DME) representan una atractiva fuente de carbono no derivada del petróleo para la producción de productos químicos. La propagación selectiva de cadena desde compuestos C1 hasta específicamente productos sigue siendo un desafío importante en el campo de la catálisis heterogénea. En esta tesis, se presenta cómo el diseño racional de un sistema catalítico en tándem, multifuncional y heterogéneo, proporciona una ruta novedosa y alternativa para la síntesis directa de productos C3 de interés a partir de compuestos C1.
En este trabajo, se ha estudiado la integración en tándem de la reacción de carbonilación de compuestos metoxi (DME) con CO, con la posterior cetonización de los productos carboxílicos C2 intermedios correspondientes en un sistema catalítico multifuncional. La integración de los catalizadores Ag/MOR y Pd/ZrCeOx respectivamente, permite la síntesis directa de acetona a partir de mezclas de DME/gas de síntesis a 548 K y 20 bares. La incorporación de H-FER nanocristalina en un catalizador multifuncional metal/óxido/zeolita Pd/ZrCeOx:FER, como funcionalidad específica de hidrólisis del acetato de metilo, ha permitido la obtención de rendimientos a acetona hasta tres veces mayores en comparación con los obtenidos utilizando solamente el catalizador metal/óxido. La funcionalidad específica de hidrólisis se ha incorporado en base a los resultados de estudios cinéticos realizados para las etapas de reacción por separado, que revelan una limitación general de la velocidad de cetonización a partir del paso de hidrólisis ácida del intermedio acetato de metilo. A una distancia intercatalítica en el rango de micrómetros, se ha mantenido una conversión de DME estable (superior al 94%), junto con una selectividad de acetona del 65-70% (entre los productos orgánicos) durante al menos 10 días de operación continua. Además, la atmósfera de gas de síntesis a alta presión permite la integración de la hidrogenación de grupos carbonilo, abriendo la puerta para la producción de 2-propanol en un solo reactor. En particular, la incorporación del catalizador de hidrogenación Ag-Pt/¿-Al2O3 ha permitido alcanzar una selectividad de 2-propanol del 51% dentro de la fracción de productos C3.
Finalmente, el concepto de conversión en tándem mencionado anteriormente se ha extendido a la conversión directa de mezclas de DME/gas de síntesis a propileno. Con este fin, se han desarrollado catalizadores basados en Ag/SiO2 como una funcionalidad de hidrodeshidratación de acetona y se han acoplado al sistema catalítico multifuncional en tándem desarrollado para la producción de acetona. A una temperatura de reacción en el rango de 548-578 K y una presión total de 15 bares, el sistema catalítico en tándem proporciona ratios propileno-a-etileno en el rango 6-9, y selectividades de propileno de hasta el 40%, para una conversión de DME >97%, demostrando que esta ruta de producción es intrínsecamente más selectiva hacia propileno que la mayoría de los procesos de metanol-a-propileno reportados. Además, la temperatura de reacción relativamente suave y el carácter reductor de la atmósfera de gas de síntesis inhiben la deposición de coque, proporcionando un comportamiento estable durante períodos de operación superiores a 214 horas. Aunque se requiere mayor optimización en cuanto al rendimiento a propileno, los resultados abren la puerta a un nuevo proceso para la producción de propileno a partir de materias primas C1, alternativo a los procesos de metanol-a-hidrocarburos.
[-]
[CA] L'actual enfocament cap a la desfossilització de la indústria química accentua la necessitat de desenvolupar processos químics mediambientalment més sostenibles. En aquest context, el disseny de sistemes catalítics ...[+]
[CA] L'actual enfocament cap a la desfossilització de la indústria química accentua la necessitat de desenvolupar processos químics mediambientalment més sostenibles. En aquest context, el disseny de sistemes catalítics en tàndem per a dur a terme reaccions mecanísticamente desacoblades en un sol reactor, representa una estratègia prometedora per potencialment reduir la grandària de les instal·lacions i aconseguir majors eficiències energètiques i econòmiques. El gas de síntesi i els seus derivats directes C1 (metanol, DME) representen una atractiva font de carboni no derivada del petroli. La propagació selectiva de cadena des de compostos C1 fins específicament productes C3 continua sent un desafiament important en el camp de la catàlisi heterogènia. En aquesta tesi, es presenta com el disseny racional d'un sistema catalític en tàndem, multifuncional i heterogeni, proporciona una ruta nova i alternativa per a la síntesi directa de productes C3 d'interés a partir de compostos C1.
En aquest treball, s'ha estudiat la integració en tàndem de la reacció de carbonilació de compostos metoxi (DME) amb CO, amb la posterior cetonització dels productes carboxílics C2 intermedis corresponents en un sistema catalític multifuncional. La integració dels catalitzadors Ag/MOR i Pd/ZrCeOx respectivament, permet la síntesi directa d'acetona a partir de mescles de DME/gas de síntesi a 548 K i 20 bars. La incorporació d'H-FER nanocristalina en un catalitzador multifuncional metall/òxid/zeolita Pd/ZrCeOx:FER, com a funcionalitat específica d'hidròlisi de l'acetat de metil, intermedi en el procés global, ha permés l'obtenció de rendiments a acetona fins a tres vegades majors en comparació amb els obtinguts utilitzant solament el catalitzador metall/òxid, Pd/ZrCeOx. La funcionalitat específica d'hidròlisi s'ha incorporat sobre la base dels resultats d'estudis cinètics realitzats per a les etapes de reacció per separat, que revelen una limitació general de la velocitat de cetonització a partir del pas d'hidròlisi àcida de l'intermediari acetat de metil. A una distància intercatalítica en el rang de micròmetres, s'ha mantingut una conversió de DME estable (superior al 94%), juntament amb una selectivitat d'acetona del 65-70% (entre tots els productes orgànics) durant almenys 10 dies d'operació contínua. A més, l'atmosfera de gas de síntesi a alta pressió permet la integració de la hidrogenació de grups carbonil, obrint la porta per a la producció no sols d'acetona, sinó també de 2-propanol en un sol reactor. En particular, la incorporació del catalitzador d'hidrogenació Ag-Pt/¿-Al2O3 ha permés aconseguir una selectivitat de 2-propanol del 51% dins de la fracció de productes C3 (és a dir, acetona, 2-propanol, propà i propilé).
Finalment, el concepte de conversió en tàndem esmentat anteriorment s'ha estés a la conversió directa de mescles de DME/gas de síntesi a propilé. A aquest efecte, s'han desenvolupat catalitzadors basats en Ag/SiO2 com una funcionalitat de hidro-deshidratació d'acetona i s'han acoblat al sistema catalític multifuncional en tàndem desenvolupat per a la producció d'acetona. A una temperatura de reacció en el rang de 548-578 K i una pressió total de 15 bars, el sistema catalític multifuncional en tàndem proporciona ràtios propilé-a-etilé en el rang 6-9, i selectivitats de propilé de fins al 40%, per a una conversió de DME >97%, demostrant que aquesta ruta de producció és intrínsecament més selectiva cap a propilé que la majoria dels processos de metanol-a-propilé reportats. A més, la temperatura de reacció relativament suau i el caràcter reductor de l'atmosfera de gas de síntesi inhibixen la deposició de coc, proporcionant un comportament estable durant períodes d'operació superiors a 214 hores. Encara que es requereix una major optimització quant al rendiment a propilé, els resultats obrin la porta a un nou procés per a la producció de propilé a partir de matèries primeres C1, alternatiu als processos de metanol-a-hidrocarburs.
[-]
[EN] The present focus on advancing towards a defossilized chemical industry underscores the need for developing more environmentally sustainable chemical processes. In this context, the design of tandem-catalytic systems ...[+]
[EN] The present focus on advancing towards a defossilized chemical industry underscores the need for developing more environmentally sustainable chemical processes. In this context, the design of tandem-catalytic systems to steer mechanistically decoupled reactions in a cascade fashion, in a single reactor, represents a promising strategy for potentially reduce the installed size of chemical processes and attain higher energy- and cost-efficiencies. Synthesis gas and its direct C1 derivatives (methanol, DME), represent an attractive non-petroleum derived carbon source for the production of commodity chemicals. The selective chain propagation from C1 building blocks to specifically C3 compounds has been demonstrated through biocatalytic routes, however it remains an important challenge for heterogeneous catalysis. In this thesis, we report how the design and engineering of a multifunctional, heterogeneous tandem-catalytic system provides a novel and alternative route for the direct synthesis of C3 compounds from C1 building blocks.
The selective obtention of C2+ products with specific chain lengths, surpassing the inherently non-selective C-C chain propagation characteristic of Fischer-Tropsch polymerization reactions, poses a significant challenge. In this work, the tandem integration of the reaction of carbonylation of methoxy compounds (DME) with CO, with subsequent ketonisation of the corresponding C2 carboxylic intermediate products on a multifunctional catalytic system is reported. The integration of an optimized Ag/MOR and Pd/ZrCeOx catalysts, respectively, allows the direct synthesis of acetone from DME/syngas mixtures at 548 K and 20 bar. Enhanced acetone time-yields, i.e. by a factor greater than three, have been obtained by incorporation of nanosized H-FER, as a specific ester hydrolysis functionality in a Pd/ZrCeOx:FER metal/oxide/zeolite multifunctional ketonisation composite catalyst. The specific hydrolysis functionality was implemented based on insights from kinetic studies on the individual reaction steps revealing overall ketonisation rate limitation from the methyl acetate intermediate acid-catalysed hydrolysis step. At the micro-meter range carbonylation/ketonisation intercatalysts spacing, a noticeably stable DME conversion (of >94%), alongside ca. 65-70% acetone selectivity (within all organic products) has been sustained for at least 10 days on-stream. Furthermore, the high-pressure syngas atmosphere allows integrating the hydrogenation of carbonyl groups therefore opening the door for the production of not only acetone but also 2-propanol in a single reactor. Particularly, Ag-Pt/¿-Al2O3 hydrogenation catalyst afforded reaching a 2-propanol selectivity of 51% within the C3 products fraction (i.e. acetone, 2-propanol, propane and propylene).
Finally, the above tandem conversion concept has been extended to the direct conversion of DME/syngas mixtures to propylene. To this end, Ag/SiO2 catalysts have been developed as an acetone hydrodehydration functionality and coupled to the multifunctional catalytic-tandem system developed for acetone production from DME/syngas mixtures. At a reaction temperature in the range of 548-578 K and a total pressure of 15 bar, the multifunctional catalytic system affords a remarkably high propylene-to-ethylene molar ratio of 6-9 and overall propylene selectivities up to 40%, at essentially full DME conversion (>97%), proving this production route intrinsically more selective to propylene than most of methanol-to-propylene processes. Moreover, the comparatively mild reaction temperature and the reducing character of the syngas atmosphere inhibit coke deposition, leading to stable performance for times-on-stream in excess of 214 hours. While future improvements in propylene time-yield will be required, the results open the door to a new process for propylene production from C1 feedstocks, alternative to methanol-to-hydrocarbons processes.
[-]
|