- -

sEMG-Based Robust Recognition of Grasping Postures with a Machine Learning Approach for Low-Cost Hand Control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

sEMG-Based Robust Recognition of Grasping Postures with a Machine Learning Approach for Low-Cost Hand Control

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mora, Marta C. es_ES
dc.contributor.author García-Ortiz, José V. es_ES
dc.contributor.author Cerdá Boluda, Joaquín es_ES
dc.date.accessioned 2024-07-15T18:13:08Z
dc.date.available 2024-07-15T18:13:08Z
dc.date.issued 2024-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/206141
dc.description.abstract [EN] The design and control of artificial hands remains a challenge in engineering. Popular prostheses are bio-mechanically simple with restricted manipulation capabilities, as advanced devices are pricy or abandoned due to their difficult communication with the hand. For social robots, the interpretation of human intention is key for their integration in daily life. This can be achieved with machine learning (ML) algorithms, which are barely used for grasping posture recognition. This work proposes an ML approach to recognize nine hand postures, representing 90% of the activities of daily living in real time using an sEMG human-robot interface (HRI). Data from 20 subjects wearing a Myo armband (8 sEMG signals) were gathered from the NinaPro DS5 and from experimental tests with the YCB Object Set, and they were used jointly in the development of a simple multi-layer perceptron in MATLAB, with a global percentage success of 73% using only two features. GPU-based implementations were run to select the best architecture, with generalization capabilities, robustness-versus-electrode shift, low memory expense, and real-time performance. This architecture enables the implementation of grasping posture recognition in low-cost devices, aimed at the development of affordable functional prostheses and HRI for social robots. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Economy, Industry and Competitiveness (Grant no: PID2020-118021RB-I00/AEI/10.13039/501100011033) and Universitat Jaume I (Grant no: UJI-B2022-48). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Artificial hand es_ES
dc.subject Grasping postures es_ES
dc.subject Machine learning es_ES
dc.subject EMG es_ES
dc.subject Recognition es_ES
dc.subject HRI es_ES
dc.subject Low-cost devices es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title sEMG-Based Robust Recognition of Grasping Postures with a Machine Learning Approach for Low-Cost Hand Control es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s24072063 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118021RB-I00/ES/HACIA UN DISEÑO UNIFICADO DE UNA MANO ARTIFICIAL ASEQUIBLE Y VERSATIL VALIDA PARA USO PROTESICO Y EN ROBOTICA COLABORATIVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//UJI-B2022-48/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Mora, MC.; García-Ortiz, JV.; Cerdá Boluda, J. (2024). sEMG-Based Robust Recognition of Grasping Postures with a Machine Learning Approach for Low-Cost Hand Control. Sensors. 24(7). https://doi.org/10.3390/s24072063 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s24072063 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 7 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 38610275 es_ES
dc.identifier.pmcid PMC11013908 es_ES
dc.relation.pasarela S\521988 es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem