Mostrar el registro sencillo del ítem
dc.contributor.author | Blanes Zamora, Sergio | es_ES |
dc.contributor.author | Casas, F. | es_ES |
dc.contributor.author | González, C. | es_ES |
dc.contributor.author | Thalhammer, M. | es_ES |
dc.date.accessioned | 2024-07-22T18:05:35Z | |
dc.date.available | 2024-07-22T18:05:35Z | |
dc.date.issued | 2024-01 | es_ES |
dc.identifier.issn | 2158-2491 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/206519 | |
dc.description.abstract | [EN] The present work provides a comprehensive study of symmetric-conjugate operator splitting methods in the context of linear parabolic problems and demonstrates their additional benefits compared to symmetric splitting methods. Relevant applications include nonreversible systems and ground state computations for linear Schrodinger equations based on the imaginary time propagation. Numerical examples confirm the favourable error behaviour of higher-order symmetric-conjugate splitting methods and illustrate the usefulness of a time stepsize control, where the local error estimation relies on the computation of the imaginary parts and thus requires negligible costs. | es_ES |
dc.description.sponsorship | This work has been supported by Ministerio de Ciencia e Innovacion (Spain) through projects PID2019-104927GB-C21 and PID2019-104927GB-C22, MCIN/AEI/10.13039/501100011033, ERDF (A way of making Europe) . Sergio Blanes and Fernando Casas acknowledge the support of the Conselleria d'Innovacio, Universitats, Ciencia i Societat Digital from the Generalitat Valenciana (Spain) through project CIAICO/2021/180. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Mathematical Sciences | es_ES |
dc.relation.ispartof | Journal of Computational Dynamics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Linear evolution equations | es_ES |
dc.subject | Parabolic problems | es_ES |
dc.subject | Schrodinger equations | es_ES |
dc.subject | Operator splitting methods | es_ES |
dc.subject | Fourier spectral methods | es_ES |
dc.subject | Stability | es_ES |
dc.subject | Convergence | es_ES |
dc.subject | Efficiency | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Symmetric-conjugate splitting merhods for evolution equations of parabolic type | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3934/jcd.2024003 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104927GB-C21/ES/METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO I/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104927GB-C22/ES/METODOS DE INTEGRACION GEOMETRICA PARA PROBLEMAS CUANTICOS, MECANICA CELESTE Y SIMULACIONES MONTECARLO II/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA// CIAICO%2F2021%2F180/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.description.bibliographicCitation | Blanes Zamora, S.; Casas, F.; González, C.; Thalhammer, M. (2024). Symmetric-conjugate splitting merhods for evolution equations of parabolic type. Journal of Computational Dynamics. 11(1):108-134. https://doi.org/10.3934/jcd.2024003 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3934/jcd.2024003 | es_ES |
dc.description.upvformatpinicio | 108 | es_ES |
dc.description.upvformatpfin | 134 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\520316 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |