- -

Hospitalization Forecast to Inform COVID-19 Pandemic Planning and Resource Allocation Using Discrete Event Simulation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hospitalization Forecast to Inform COVID-19 Pandemic Planning and Resource Allocation Using Discrete Event Simulation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wikman-Jorgensen, Philip Erick es_ES
dc.contributor.author Ruiz, Angel es_ES
dc.contributor.author Giner-Galvan, Vicente es_ES
dc.contributor.author Llenas-García, Jara es_ES
dc.contributor.author Seguí-Ripoll, José Miguel es_ES
dc.contributor.author Salinas-Serrano, Jose Maria es_ES
dc.contributor.author Borrajo, Emilio es_ES
dc.contributor.author Ibarra-Sánchez, Jose Maria es_ES
dc.contributor.author García Sabater, José Pedro es_ES
dc.contributor.author Marin-Garcia, Juan A. es_ES
dc.date.accessioned 2024-09-05T18:23:43Z
dc.date.available 2024-09-05T18:23:43Z
dc.date.issued 2024-01 es_ES
dc.identifier.issn 2013-8423 es_ES
dc.identifier.uri http://hdl.handle.net/10251/207487
dc.description.abstract [EN] Purpose: This study aims to address the pressing need for accurate forecasting of healthcare resource demands during the COVID-19 pandemic. It presents an approach that combines a stochastic Markov model and a discrete event simulation model to dynamically predict hospital admissions and daily occupancy of hospital and ICU beds. Design/methodology/approach: The research builds upon existing work related to predicting COVID-19 spread and patient influx to hospital emergency departments. The proposed model was developed and validated at San Juan de Alicante University Hospital from July 10, 2020, to January 10, 2022, and externally validated at Hospital Vega Baja. The model involves an admissions generator based on a stochastic Markov model, feeding data into a discrete event simulation model in the R programming language. The probabilities of hospital admission were calculated based on age-stratified positive SARS-COV-2 results from the health department's catchment population. The discrete event simulation model simulates distinct patient pathways within the hospital to estimate bed occupancy for the upcoming week. The performance of the model was measured using the median absolute difference (MAD) between predicted and actual demand. Findings: When applied to data from San Juan hospital, the admissions generator demonstrated a MAD of 6 admissions/week (interquartile range [IQR] 2-11). The MAD between the model's predictions and actual bed occupancy was 20 beds/day (IQR 5-43), equivalent to 5% of total hospital beds. For ICU occupancy, the MAD was 4 beds/day (IQR 2-7), constituting 25% of ICU beds. Evaluation with data from Hospital Vega Baja showcased an admissions generator MAD of 2.42 admissions/week (IQR 1.02-7.41). The MAD between the model's predictions and actual bed occupancy was 18 beds/day (IQR 19.57-38.89), approximately 5.1% of hospital beds. The ICU occupancy MAD was 3 beds/day (IQR 1-5), making up 21.4% of ICU beds. Practical implications: The dynamic predictions of hospital admissions, ward beds, and ICU occupancy for COVID-19 patients proved highly valuable to hospital managers, facilitating early and informed planning of resource allocation. Originality/value: This study introduces a hybrid approach that combines stochastic modeling and discrete event simulation to forecast healthcare resource demands during the COVID-19 pandemic. The methodology's effectiveness in predicting admissions and bed occupancy contributes to improved resource planning and situational awareness. es_ES
dc.description.sponsorship Project funded by Conselleria de Sanitat Universal i Salut Publica (Generalitat Valenciana, Spain) and the EU Operational Program of the European Regional Development Fund (ERDF) for the Valencian Community 2014-2020, within the framework of the REACT-EU programme, as the Union's response to the COVID-19 pandemic. es_ES
dc.language Inglés es_ES
dc.publisher OmniaScienc es_ES
dc.relation.ispartof Journal of Industrial Engineering and Management es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Covid-19 es_ES
dc.subject Resource allocation es_ES
dc.subject Hospitalization forecast es_ES
dc.subject Planning es_ES
dc.subject Management es_ES
dc.subject Incidence es_ES
dc.subject Mathematical model es_ES
dc.subject Discrete event simulation es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Hospitalization Forecast to Inform COVID-19 Pandemic Planning and Resource Allocation Using Discrete Event Simulation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3926/jiem.6404 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//REACT-EU/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Wikman-Jorgensen, PE.; Ruiz, A.; Giner-Galvan, V.; Llenas-García, J.; Seguí-Ripoll, JM.; Salinas-Serrano, JM.; Borrajo, E.... (2024). Hospitalization Forecast to Inform COVID-19 Pandemic Planning and Resource Allocation Using Discrete Event Simulation. Journal of Industrial Engineering and Management. 17(1):168-181. https://doi.org/10.3926/jiem.6404 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3926/jiem.6404 es_ES
dc.description.upvformatpinicio 168 es_ES
dc.description.upvformatpfin 181 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\520746 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem