Mostrar el registro sencillo del ítem
dc.contributor.author | Wikman-Jorgensen, Philip Erick | es_ES |
dc.contributor.author | Ruiz, Angel | es_ES |
dc.contributor.author | Giner-Galvan, Vicente | es_ES |
dc.contributor.author | Llenas-García, Jara | es_ES |
dc.contributor.author | Seguí-Ripoll, José Miguel | es_ES |
dc.contributor.author | Salinas-Serrano, Jose Maria | es_ES |
dc.contributor.author | Borrajo, Emilio | es_ES |
dc.contributor.author | Ibarra-Sánchez, Jose Maria | es_ES |
dc.contributor.author | García Sabater, José Pedro | es_ES |
dc.contributor.author | Marin-Garcia, Juan A. | es_ES |
dc.date.accessioned | 2024-09-05T18:23:43Z | |
dc.date.available | 2024-09-05T18:23:43Z | |
dc.date.issued | 2024-01 | es_ES |
dc.identifier.issn | 2013-8423 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/207487 | |
dc.description.abstract | [EN] Purpose: This study aims to address the pressing need for accurate forecasting of healthcare resource demands during the COVID-19 pandemic. It presents an approach that combines a stochastic Markov model and a discrete event simulation model to dynamically predict hospital admissions and daily occupancy of hospital and ICU beds. Design/methodology/approach: The research builds upon existing work related to predicting COVID-19 spread and patient influx to hospital emergency departments. The proposed model was developed and validated at San Juan de Alicante University Hospital from July 10, 2020, to January 10, 2022, and externally validated at Hospital Vega Baja. The model involves an admissions generator based on a stochastic Markov model, feeding data into a discrete event simulation model in the R programming language. The probabilities of hospital admission were calculated based on age-stratified positive SARS-COV-2 results from the health department's catchment population. The discrete event simulation model simulates distinct patient pathways within the hospital to estimate bed occupancy for the upcoming week. The performance of the model was measured using the median absolute difference (MAD) between predicted and actual demand. Findings: When applied to data from San Juan hospital, the admissions generator demonstrated a MAD of 6 admissions/week (interquartile range [IQR] 2-11). The MAD between the model's predictions and actual bed occupancy was 20 beds/day (IQR 5-43), equivalent to 5% of total hospital beds. For ICU occupancy, the MAD was 4 beds/day (IQR 2-7), constituting 25% of ICU beds. Evaluation with data from Hospital Vega Baja showcased an admissions generator MAD of 2.42 admissions/week (IQR 1.02-7.41). The MAD between the model's predictions and actual bed occupancy was 18 beds/day (IQR 19.57-38.89), approximately 5.1% of hospital beds. The ICU occupancy MAD was 3 beds/day (IQR 1-5), making up 21.4% of ICU beds. Practical implications: The dynamic predictions of hospital admissions, ward beds, and ICU occupancy for COVID-19 patients proved highly valuable to hospital managers, facilitating early and informed planning of resource allocation. Originality/value: This study introduces a hybrid approach that combines stochastic modeling and discrete event simulation to forecast healthcare resource demands during the COVID-19 pandemic. The methodology's effectiveness in predicting admissions and bed occupancy contributes to improved resource planning and situational awareness. | es_ES |
dc.description.sponsorship | Project funded by Conselleria de Sanitat Universal i Salut Publica (Generalitat Valenciana, Spain) and the EU Operational Program of the European Regional Development Fund (ERDF) for the Valencian Community 2014-2020, within the framework of the REACT-EU programme, as the Union's response to the COVID-19 pandemic. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | OmniaScienc | es_ES |
dc.relation.ispartof | Journal of Industrial Engineering and Management | es_ES |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Covid-19 | es_ES |
dc.subject | Resource allocation | es_ES |
dc.subject | Hospitalization forecast | es_ES |
dc.subject | Planning | es_ES |
dc.subject | Management | es_ES |
dc.subject | Incidence | es_ES |
dc.subject | Mathematical model | es_ES |
dc.subject | Discrete event simulation | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Hospitalization Forecast to Inform COVID-19 Pandemic Planning and Resource Allocation Using Discrete Event Simulation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3926/jiem.6404 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//REACT-EU/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | Wikman-Jorgensen, PE.; Ruiz, A.; Giner-Galvan, V.; Llenas-García, J.; Seguí-Ripoll, JM.; Salinas-Serrano, JM.; Borrajo, E.... (2024). Hospitalization Forecast to Inform COVID-19 Pandemic Planning and Resource Allocation Using Discrete Event Simulation. Journal of Industrial Engineering and Management. 17(1):168-181. https://doi.org/10.3926/jiem.6404 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3926/jiem.6404 | es_ES |
dc.description.upvformatpinicio | 168 | es_ES |
dc.description.upvformatpfin | 181 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\520746 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.subject.ods | 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |