Mostrar el registro sencillo del ítem
dc.contributor.author | Gutiérrez-Fernández-Calvillo, Miriam | es_ES |
dc.contributor.author | Cámara-Vázquez, Miguel Ángel | es_ES |
dc.contributor.author | Hernández-Romero, Ismael | es_ES |
dc.contributor.author | Guillem Sánchez, María Salud | es_ES |
dc.contributor.author | Climent, Andreu M. | es_ES |
dc.contributor.author | Fambuena-Santos, Carlos | es_ES |
dc.contributor.author | Barquero-Pérez, Óscar | es_ES |
dc.date.accessioned | 2024-09-06T18:16:30Z | |
dc.date.available | 2024-09-06T18:16:30Z | |
dc.date.issued | 2024-04 | es_ES |
dc.identifier.issn | 0169-2607 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/207616 | |
dc.description.abstract | [EN] Background and Objective: Atrial Fibrillation (AF) is a supraventricular tachyarrhythmia that can lead to thromboembolism, hearlt failure, ischemic stroke, and a decreased quality of life. Characterizing the locations where the mechanisms of AF are initialized and maintained is key to accomplishing an effective ablation of the targets, hence restoring sinus rhythm. Many methods have been investigated to locate such targets in a non-invasive way, such as Electrocardiographic Imaging, which enables an on -invasive and panoramic characterization of cardiac electrical activity using recording Body Surface Potentials (BSP) and a torso model of the patient. Nonetheless, this technique entails some major issues stemming from solving the inverse problem, which is known to be severely ill -posed. In this context, many machine learning and deep learning approaches aim to tackle the characterization and classification of AF targets to improve AF diagnosis and treatment. Methods: In this work, we propose a method to locate AF drivers as a supervised classification problem. We employed a hybrid form of the convolutional -recurrent network which enables feature extraction and sequential data modeling utilizing labeled realistic computerized AF models. Thus, we used 16 AF electrograms, 1 atrium, and 10 torso geometries to compute the forward problem. Previously, the AF models were labeled by assigning each sample of the signals a region from the atria from 0 (no driver) to 7, according to the spatial location of the AF driver. The resulting 160 BSP signals, which resemble a 64 -lead vest recording, are preprocessed and then introduced into the network following a 4 -fold cross -validation in batches of 50 samples. Results: The results show a mean accuracy of 74.75% among the 4 folds, with a better performance in detecting sinus rhythm, and drivers near the left superior pulmonary vein (R1), and right superior pulmonary vein (R3) whose mean sensitivity bounds around 84%-87%. Significantly good results are obtained in mean sensitivity (87%) and specificity (83%) in R1. Conclusions: Good results in R1 are highly convenient since AF drivers are commonly found in this area: the left atrial appendage, as suggested in some previous studies. These promising results indicate that using CNN-LSTM networks could lead to new strategies exploiting temporal correlations to address this challenge effectively. | es_ES |
dc.description.sponsorship | This work has been partially supported by: Ministerio de Ciencia e Innovacion (PID2019-105032GB-I00, PID2022-136887NB-I00) , Rey Juan Carlos University (2023/00004/006-F918) , Instituto de Salud Carlos III and Ministerio de Ciencia, Innovacion y Universidades (supported by FEDER Fondo Europeo de Desarrollo Regional PI17/01106 and Consejeria de Ciencia, Universidades e Innovacion of the Comunidad de Madrid through the program RIS3 (S-2020/L2-622) , EIT Health Activity code 19600 and the European Union Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 860974. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Computer Methods and Programs in Biomedicine | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Body surface potentials | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Inverse problem | es_ES |
dc.subject | Recurrent neural network | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Non-invasive estimation of atrial fibrillation driver position using long-short term memory neural networks and body surface potentials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cmpb.2024.108052 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105032GB-I00/ES/PROCESAMIENTO DE SEÑAL PARA DATOS DEFINIDOS SOBRE GRAFOS: APROVECHANDO LA ESTRUCTURA EN DOMINIOS IRREGULARES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136887NB-I00/ES/PROCESAMIENTO Y APRENDIZAJE DE DATOS SOBRE GRAFOS: DESDE LA INFERENCIA DE LA ESTRUCTURA A LAS APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/860974/EU/Personalized Therapies for Atrial Fibrillation. A Translational Approach/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016 (ISCIII)/PI17%2F01106/ES/ESTRATIFICACION Y TRATAMIENTO DE LA FIBRILACION AURICULAR BASADA EN LOS MECANISMOS DE PERPETUACION DE LA ARRITMIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/URJC//2023%2F00004%2F006-F918/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM//S-2020%2FL2-622//RIS3/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FEDER//EITHealth 19600 AFFINE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació | es_ES |
dc.description.bibliographicCitation | Gutiérrez-Fernández-Calvillo, M.; Cámara-Vázquez, MÁ.; Hernández-Romero, I.; Guillem Sánchez, MS.; Climent, AM.; Fambuena-Santos, C.; Barquero-Pérez, Ó. (2024). Non-invasive estimation of atrial fibrillation driver position using long-short term memory neural networks and body surface potentials. Computer Methods and Programs in Biomedicine. 246. https://doi.org/10.1016/j.cmpb.2024.108052 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cmpb.2024.108052 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 246 | es_ES |
dc.identifier.pmid | 38350188 | es_ES |
dc.relation.pasarela | S\522610 | es_ES |
dc.contributor.funder | Comunidad de Madrid | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Universidad Rey Juan Carlos | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |