- -

Non-invasive estimation of atrial fibrillation driver position using long-short term memory neural networks and body surface potentials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-invasive estimation of atrial fibrillation driver position using long-short term memory neural networks and body surface potentials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gutiérrez-Fernández-Calvillo, Miriam es_ES
dc.contributor.author Cámara-Vázquez, Miguel Ángel es_ES
dc.contributor.author Hernández-Romero, Ismael es_ES
dc.contributor.author Guillem Sánchez, María Salud es_ES
dc.contributor.author Climent, Andreu M. es_ES
dc.contributor.author Fambuena-Santos, Carlos es_ES
dc.contributor.author Barquero-Pérez, Óscar es_ES
dc.date.accessioned 2024-09-06T18:16:30Z
dc.date.available 2024-09-06T18:16:30Z
dc.date.issued 2024-04 es_ES
dc.identifier.issn 0169-2607 es_ES
dc.identifier.uri http://hdl.handle.net/10251/207616
dc.description.abstract [EN] Background and Objective: Atrial Fibrillation (AF) is a supraventricular tachyarrhythmia that can lead to thromboembolism, hearlt failure, ischemic stroke, and a decreased quality of life. Characterizing the locations where the mechanisms of AF are initialized and maintained is key to accomplishing an effective ablation of the targets, hence restoring sinus rhythm. Many methods have been investigated to locate such targets in a non-invasive way, such as Electrocardiographic Imaging, which enables an on -invasive and panoramic characterization of cardiac electrical activity using recording Body Surface Potentials (BSP) and a torso model of the patient. Nonetheless, this technique entails some major issues stemming from solving the inverse problem, which is known to be severely ill -posed. In this context, many machine learning and deep learning approaches aim to tackle the characterization and classification of AF targets to improve AF diagnosis and treatment. Methods: In this work, we propose a method to locate AF drivers as a supervised classification problem. We employed a hybrid form of the convolutional -recurrent network which enables feature extraction and sequential data modeling utilizing labeled realistic computerized AF models. Thus, we used 16 AF electrograms, 1 atrium, and 10 torso geometries to compute the forward problem. Previously, the AF models were labeled by assigning each sample of the signals a region from the atria from 0 (no driver) to 7, according to the spatial location of the AF driver. The resulting 160 BSP signals, which resemble a 64 -lead vest recording, are preprocessed and then introduced into the network following a 4 -fold cross -validation in batches of 50 samples. Results: The results show a mean accuracy of 74.75% among the 4 folds, with a better performance in detecting sinus rhythm, and drivers near the left superior pulmonary vein (R1), and right superior pulmonary vein (R3) whose mean sensitivity bounds around 84%-87%. Significantly good results are obtained in mean sensitivity (87%) and specificity (83%) in R1. Conclusions: Good results in R1 are highly convenient since AF drivers are commonly found in this area: the left atrial appendage, as suggested in some previous studies. These promising results indicate that using CNN-LSTM networks could lead to new strategies exploiting temporal correlations to address this challenge effectively. es_ES
dc.description.sponsorship This work has been partially supported by: Ministerio de Ciencia e Innovacion (PID2019-105032GB-I00, PID2022-136887NB-I00) , Rey Juan Carlos University (2023/00004/006-F918) , Instituto de Salud Carlos III and Ministerio de Ciencia, Innovacion y Universidades (supported by FEDER Fondo Europeo de Desarrollo Regional PI17/01106 and Consejeria de Ciencia, Universidades e Innovacion of the Comunidad de Madrid through the program RIS3 (S-2020/L2-622) , EIT Health Activity code 19600 and the European Union Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 860974. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Body surface potentials es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Inverse problem es_ES
dc.subject Recurrent neural network es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Non-invasive estimation of atrial fibrillation driver position using long-short term memory neural networks and body surface potentials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2024.108052 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105032GB-I00/ES/PROCESAMIENTO DE SEÑAL PARA DATOS DEFINIDOS SOBRE GRAFOS: APROVECHANDO LA ESTRUCTURA EN DOMINIOS IRREGULARES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136887NB-I00/ES/PROCESAMIENTO Y APRENDIZAJE DE DATOS SOBRE GRAFOS: DESDE LA INFERENCIA DE LA ESTRUCTURA A LAS APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/860974/EU/Personalized Therapies for Atrial Fibrillation. A Translational Approach/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016 (ISCIII)/PI17%2F01106/ES/ESTRATIFICACION Y TRATAMIENTO DE LA FIBRILACION AURICULAR BASADA EN LOS MECANISMOS DE PERPETUACION DE LA ARRITMIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/URJC//2023%2F00004%2F006-F918/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAM//S-2020%2FL2-622//RIS3/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FEDER//EITHealth 19600 AFFINE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.description.bibliographicCitation Gutiérrez-Fernández-Calvillo, M.; Cámara-Vázquez, MÁ.; Hernández-Romero, I.; Guillem Sánchez, MS.; Climent, AM.; Fambuena-Santos, C.; Barquero-Pérez, Ó. (2024). Non-invasive estimation of atrial fibrillation driver position using long-short term memory neural networks and body surface potentials. Computer Methods and Programs in Biomedicine. 246. https://doi.org/10.1016/j.cmpb.2024.108052 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cmpb.2024.108052 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 246 es_ES
dc.identifier.pmid 38350188 es_ES
dc.relation.pasarela S\522610 es_ES
dc.contributor.funder Comunidad de Madrid es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Universidad Rey Juan Carlos es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem