Mostrar el registro sencillo del ítem
dc.contributor.author | Vert Belenguer, Vicente Bernardo | es_ES |
dc.contributor.author | Solis Díaz, Cecilia | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.date.accessioned | 2013-04-19T12:18:20Z | |
dc.date.issued | 2010-08-17 | |
dc.identifier.issn | 1615-6846 | |
dc.identifier.uri | http://hdl.handle.net/10251/28081 | |
dc.description.abstract | [EN] The electrochemical properties of mixed conducing ceramic¿ceramic composites for proton conducting fuel cells have been investigated. Different ratios of Pr0.58Sr0.4Fe0.8Co0.2O3¿¿¿BaCe0.9Yb0.1O3¿¿ composites have been tested as cathodes in symmetrical cells based on BaCe0.9Y0.1O3¿¿ dense electrolytes. Impedance measurements have been carried out in the temperature range of 600¿800¿°C under wet (2.5%) air. Different dilutions on both oxygen partial pressure and water content have been performed as a function of the temperature in order to characterise the processes (surface reaction and charge transport) occurring at the composite electrode under oxidising conditions. The variation of the impedance spectra after replacing protonated water by heavy water has been studied in order to understand the role of the proton transport in the overall composite cathode operation. Additional four-point DC-conductivity measurements have been done under different atmospheres comprising different oxygen partial pressures and H2O/D2O saturation for composites and single materials. | es_ES |
dc.description.sponsorship | Funding from Universitat Politècnica de València (grant FPI-UPV-2007-06), the Spanish Ministry for Science and Innovation (Project ENE-2008-06302) and European Union (FP7 Project EFFIPRO – grant Agreement 227560) are kindly acknowledged. Authors are indebted to S. Jiménez for sample preparation. | |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Fuel Cells | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Barium cerate | es_ES |
dc.subject | Cathodes | es_ES |
dc.subject | Electrochemical impedance spectroscopy | es_ES |
dc.subject | PCFC | es_ES |
dc.subject | Perovskite | es_ES |
dc.subject | Proton conductor | es_ES |
dc.subject | Cer-Cer | es_ES |
dc.title | Electrochemical properties of PSFC-BCYb composites as cathodes for proton conducting solid oxide fuel cells | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/fuce.201000090 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/227560/EU/Efficient and robust fuel cell with novel ceramic proton conducting electrolyte/ | en_EN |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI-UPV-2007-06/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//ENE2008-06302/ES/BUSQUEDA DE NUEVOS MATERIALES CONDUCTORES DE OXIGENO E HIDROGENO EN ESTADO SOLIDO MEDIANTE QUIMICA COMBINATORIA/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Vert Belenguer, VB.; Solis Díaz, C.; Serra Alfaro, JM. (2010). Electrochemical properties of PSFC-BCYb composites as cathodes for proton conducting solid oxide fuel cells. Fuel Cells. 11(1):81-90. https://doi.org/10.1002/fuce.201000090 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://onlinelibrary.wiley.com/doi/10.1002/fuce.201000090/pdf | es_ES |
dc.description.upvformatpinicio | 81 | es_ES |
dc.description.upvformatpfin | 90 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 40418 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.description.references | IWAHARA, H., ESAKA, T., UCHIDA, H., & MAEDA, N. (1981). Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics, 3-4, 359-363. doi:10.1016/0167-2738(81)90113-2 | es_ES |
dc.description.references | Bonanos, N. (1995). Perovskite solid electrolytes: Structure, transport properties and fuel cell applications. Solid State Ionics, 79, 161-170. doi:10.1016/0167-2738(95)00056-c | es_ES |
dc.description.references | Noirault, S., Célérier, S., Joubert, O., Caldes, M. T., & Piffard, Y. (2007). Incorporation of Water and Fast Proton Conduction in the Inherently Oxygen-Deficient Compound La26O27□(BO3)8. Advanced Materials, 19(6), 867-870. doi:10.1002/adma.200602033 | es_ES |
dc.description.references | Iwahara, H., Uchida, H., & Tanaka, S. (1983). High temperature type proton conductor based on SrCeO3 and its application to solid electrolyte fuel cells. Solid State Ionics, 9-10, 1021-1025. doi:10.1016/0167-2738(83)90125-x | es_ES |
dc.description.references | Serra, J. M., Büchler, O., Meulenberg, W. A., & Buchkremer, H. P. (2007). Thin BaCe[sub 0.8]Gd[sub 0.2]O[sub 3−δ] Protonic Electrolytes on Porous Ce[sub 0.8]Gd[sub 0.2]O[sub 1.9]–Ni Substrates. Journal of The Electrochemical Society, 154(3), B334. doi:10.1149/1.2422901 | es_ES |
dc.description.references | Serra, J. M., & Meulenberg, W. A. (2007). Thin-Film Proton BaZr0.85Y0.15O3Conducting Electrolytes: Toward an Intermediate-Temperature Solid Oxide Fuel Cell Alternative. Journal of the American Ceramic Society, 90(7), 2082-2089. doi:10.1111/j.1551-2916.2007.01677.x | es_ES |
dc.description.references | Yang, L., Zuo, C., Wang, S., Cheng, Z., & Liu, M. (2008). A Novel Composite Cathode for Low-Temperature SOFCs Based on Oxide Proton Conductors. Advanced Materials, 20(17), 3280-3283. doi:10.1002/adma.200702762 | es_ES |
dc.description.references | Fabbri, E., Licoccia, S., Traversa, E., & Wachsman, E. D. (2009). Composite Cathodes for Proton Conducting Electrolytes. Fuel Cells, 9(2), 128-138. doi:10.1002/fuce.200800126 | es_ES |
dc.description.references | Ranran, P., Yan, W., Lizhai, Y., & Zongqiang, M. (2006). Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ionics, 177(3-4), 389-393. doi:10.1016/j.ssi.2005.11.020 | es_ES |
dc.description.references | Zhao, L., He, B., Lin, B., Ding, H., Wang, S., Ling, Y., … Liu, X. (2009). High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+δ cathode. Journal of Power Sources, 194(2), 835-837. doi:10.1016/j.jpowsour.2009.06.010 | es_ES |
dc.description.references | Huang, C., Chen, D., Lin, Y., Ran, R., & Shao, Z. (2010). Evaluation of Ba0.6Sr0.4Co0.9Nb0.1O3−δ mixed conductor as a cathode for intermediate-temperature oxygen-ionic solid-oxide fuel cells. Journal of Power Sources, 195(16), 5176-5184. doi:10.1016/j.jpowsour.2010.02.080 | es_ES |
dc.description.references | Kosacki, I. (1995). Mixed conductivity in SrCe0.95Yb0.05O3 protonic conductors. Solid State Ionics, 80(3-4), 223-229. doi:10.1016/0167-2738(95)00142-s | es_ES |
dc.description.references | Yoo, H.-I., Yoon, J.-Y., Ha, J.-S., & Lee, C.-E. (2008). Hydration and oxidation kinetics of a proton conductor oxide, SrCe0.95Yb0.05O2.975. Phys. Chem. Chem. Phys., 10(7), 974-982. doi:10.1039/b709371c | es_ES |
dc.description.references | Wu, J., Webb, S. M., Brennan, S., & Haile, S. M. (2005). Dopant site selectivity in BaCe0.85M0.15O3-δ by extended x-ray absorption fine structure. Journal of Applied Physics, 97(5), 054101. doi:10.1063/1.1846946 | es_ES |
dc.description.references | Song, S.-J., Wachsman, E. D., Rhodes, J., Yoon, H.-S., Lee, K.-H., Zhang, G., … Balachandran, U. (2005). Hydrogen permeability and effect of microstructure on mixed protonic-electronic conducting Eu-doped strontium cerate. Journal of Materials Science, 40(15), 4061-4066. doi:10.1007/s10853-005-2841-7 | es_ES |
dc.description.references | Serra, J. M., Vert, V. B., Betz, M., Haanappel, V. A. C., Meulenberg, W. A., & Tietz, F. (2008). Screening of A-Substitution in the System A[sub 0.68]Sr[sub 0.3]Fe[sub 0.8]Co[sub 0.2]O[sub 3−δ] for SOFC Cathodes. Journal of The Electrochemical Society, 155(2), B207. doi:10.1149/1.2818766 | es_ES |
dc.description.references | Magnone, E., Miyayama, M., & Traversa, E. (2010). Electrochemical Impedance Spectroscopy Analysis of Pr[sub 0.8]Sr[sub 0.2]Co[sub 0.5]Fe[sub 0.5]O[sub 3−δ] as Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 157(3), B357. doi:10.1149/1.3274911 | es_ES |
dc.description.references | US Patent 3,330,697 1967 | es_ES |
dc.description.references | Wang, W. (2004). A conductimetric humidity sensor based on proton conducting perovskite oxides. Sensors and Actuators B: Chemical, 98(2-3), 282-290. doi:10.1016/j.snb.2003.10.035 | es_ES |
dc.description.references | Bonanos, N. (1992). Transport properties and conduction mechanism in high-temperature protonic conductors. Solid State Ionics, 53-56, 967-974. doi:10.1016/0167-2738(92)90278-w | es_ES |
dc.description.references | Azimova, M. A., & McIntosh, S. (2009). Transport properties and stability of cobalt doped proton conducting oxides. Solid State Ionics, 180(2-3), 160-167. doi:10.1016/j.ssi.2008.12.013 | es_ES |
dc.description.references | Nowick, A. ., & Vaysleyb, A. . (1997). Isotope effect and proton hopping in high-temperature protonic conductors. Solid State Ionics, 97(1-4), 17-26. doi:10.1016/s0167-2738(97)00081-7 | es_ES |
dc.description.references | Magnone, E., Miyayama, M., & Traversa, E. (2009). Structural Properties and Electrochemical Characteristics of Ba[sub 0.5]Sr[sub 0.5]Co[sub 1−x]Fe[sub x]O[sub 3−δ] Phases in Different Atmospheres. Journal of The Electrochemical Society, 156(9), B1059. doi:10.1149/1.3158745 | es_ES |