- -

Multidisciplinary approach to cylindrical anisotropic metamaterials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multidisciplinary approach to cylindrical anisotropic metamaterials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carbonell Olivares, Jorge es_ES
dc.contributor.author Torrent Martí, Daniel es_ES
dc.contributor.author Díaz Rubio, Ana es_ES
dc.contributor.author Sánchez-Dehesa Moreno-Cid, José es_ES
dc.date.accessioned 2013-04-29T08:52:48Z
dc.date.available 2013-04-29T08:52:48Z
dc.date.issued 2011
dc.identifier.issn 1367-2630
dc.identifier.uri http://hdl.handle.net/10251/28288
dc.description.abstract Anisotropic characteristics of cylindrically corrugated microstructures are analyzed in terms of their acoustic and electromagnetic (EM) behavior paying special attention to their differences and similarities. A simple analytical model has been developed using effective medium theory to understand the anisotropic features of both types of waves in terms of radial and angular components of the wave propagation velocity. The anisotropic constituent parameters have been obtained by measuring the resonances of cylindrical cavities, as well as from numerical simulations. This permits one to characterize propagation of acoustic and EM waves and to compare the fundamental anisotropic features generated by the corrugated effective medium. Anisotropic coefficients match closely in both physics fields but other relevant parameters show significant differences in the behavior of both types of waves. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. es_ES
dc.description.sponsorship The authors acknowledge financial support from the Spanish MICINN (TEC 2010-19751 and Consolider CSD2008-00066) and from the US Office of Naval Research (N000140910554). DT also acknowledges support from the program 'Campus de Excelencia Internacional 2010 UPV'. en_EN
dc.language Inglés es_ES
dc.publisher IOP Publishing: Open Access Journals es_ES
dc.relation.ispartof New Journal of Physics es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Analytical model es_ES
dc.subject Anisotropic features es_ES
dc.subject Anisotropic metamaterials es_ES
dc.subject Corrugated microstructure es_ES
dc.subject Cylindrical cavities es_ES
dc.subject Effective medium es_ES
dc.subject Effective medium theories es_ES
dc.subject Multi-disciplinary approach es_ES
dc.subject Wave propagation velocities es_ES
dc.subject Acoustic wave propagation es_ES
dc.subject Anisotropy es_ES
dc.subject Behavioral research es_ES
dc.subject Computer simulation es_ES
dc.subject Electromagnetic waves es_ES
dc.subject Mathematical models es_ES
dc.subject Metamaterials es_ES
dc.subject Anisotropic media es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Multidisciplinary approach to cylindrical anisotropic metamaterials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1367-2630/13/10/103034
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Carbonell Olivares, J.; Torrent Martí, D.; Díaz Rubio, A.; Sánchez-Dehesa Moreno-Cid, J. (2011). Multidisciplinary approach to cylindrical anisotropic metamaterials. New Journal of Physics. 13:103034-103034. https://doi.org/10.1088/1367-2630/13/10/103034 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1088/1367-2630/13/10/103034 es_ES
dc.description.upvformatpinicio 103034 es_ES
dc.description.upvformatpfin 103034 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.relation.senia 202871
dc.contributor.funder Office of Naval Research es_ES
dc.description.references Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials. doi:10.1002/0471784192 es_ES
dc.description.references Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907 es_ES
dc.description.references Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966 es_ES
dc.description.references Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301 es_ES
dc.description.references Jacob, Z., Alekseyev, L. V., & Narimanov, E. (2006). Optical Hyperlens: Far-field imaging beyond the diffraction limit. Optics Express, 14(18), 8247. doi:10.1364/oe.14.008247 es_ES
dc.description.references Bradley, C. E. (1994). Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part I. Theory. The Journal of the Acoustical Society of America, 96(3), 1844-1853. doi:10.1121/1.410196 es_ES
dc.description.references Bradley, C. E. (1994). Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part II. Experiment. The Journal of the Acoustical Society of America, 96(3), 1854-1862. doi:10.1121/1.410197 es_ES
dc.description.references Schoenberg, M., & Sen, P. N. (1983). Properties of a periodically stratified acoustic half‐space and its relation to a Biot fluid. The Journal of the Acoustical Society of America, 73(1), 61-67. doi:10.1121/1.388724 es_ES
dc.description.references Peng, L., Ran, L., & Mortensen, N. A. (2010). Achieving anisotropy in metamaterials made of dielectric cylindrical rods. Applied Physics Letters, 96(24), 241108. doi:10.1063/1.3453446 es_ES
dc.description.references Carbonell, J., Cervera, F., Sánchez-Dehesa, J., Arriaga, J., Gumen, L., & Krokhin, A. (2010). Homogenization of two-dimensional anisotropic dissipative photonic crystal. Applied Physics Letters, 97(23), 231122. doi:10.1063/1.3526381 es_ES
dc.description.references Valero-Nogueira, A., Alfonso, E., Herranz, J. I., & Baquero, M. (2007). Planar slot-array antenna fed by an oversized quasi-TEM waveguide. Microwave and Optical Technology Letters, 49(8), 1875-1877. doi:10.1002/mop.22586 es_ES
dc.description.references Ni, Y., Gao, L., & Qiu, C.-W. (2010). Achieving Invisibility of Homogeneous Cylindrically Anisotropic Cylinders. Plasmonics, 5(3), 251-258. doi:10.1007/s11468-010-9145-8 es_ES
dc.description.references Huang, Y., Feng, Y., & Jiang, T. (2007). Electromagnetic cloaking by layered structure of homogeneous isotropic materials. Optics Express, 15(18), 11133. doi:10.1364/oe.15.011133 es_ES
dc.description.references Elliott, R. (1954). On the theory of corrugated plane surfaces. Transactions of the IRE Professional Group on Antennas and Propagation, 2(2), 71-81. doi:10.1109/t-ap.1954.27975 es_ES
dc.description.references Goubau, G. (1950). Surface Waves and Their Application to Transmission Lines. Journal of Applied Physics, 21(11), 1119-1128. doi:10.1063/1.1699553 es_ES
dc.description.references Wang, B., Jin, Y., & He, S. (2008). Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies. Applied Optics, 47(21), 3694. doi:10.1364/ao.47.003694 es_ES
dc.description.references Kildal, P.-S. (1990). Artificially soft and hard surfaces in electromagnetics. IEEE Transactions on Antennas and Propagation, 38(10), 1537-1544. doi:10.1109/8.59765 es_ES
dc.description.references Giovannini, L., Nizzoli, F., & Marvin, A. M. (1992). Theory of surface acoustic phonon normal modes and light scattering cross section in a periodically corrugated surface. Physical Review Letters, 69(10), 1572-1575. doi:10.1103/physrevlett.69.1572 es_ES
dc.description.references Lakhtakia, A., Varadan, V. K., & Varadan, V. V. (1985). On the acoustic response of a deeply corrugated periodic surface— A hybrid T‐matrix approach. The Journal of the Acoustical Society of America, 78(6), 2100-2104. doi:10.1121/1.392669 es_ES
dc.description.references Kundu, T., Banerjee, S., & Jata, K. V. (2006). An experimental investigation of guided wave propagation in corrugated plates showing stop bands and pass bands. The Journal of the Acoustical Society of America, 120(3), 1217-1226. doi:10.1121/1.2221534 es_ES
dc.description.references Torrent, D., & Sánchez-Dehesa, J. (2010). Anisotropic Mass Density by Radially Periodic Fluid Structures. Physical Review Letters, 105(17). doi:10.1103/physrevlett.105.174301 es_ES
dc.description.references Chew, W. C. (1999). Waves and Fields in Inhomogenous Media. doi:10.1109/9780470547052 es_ES
dc.description.references Smith, D. R., Vier, D. C., Koschny, T., & Soukoulis, C. M. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 71(3). doi:10.1103/physreve.71.036617 es_ES
dc.description.references Fokin, V., Ambati, M., Sun, C., & Zhang, X. (2007). Method for retrieving effective properties of locally resonant acoustic metamaterials. Physical Review B, 76(14). doi:10.1103/physrevb.76.144302 es_ES
dc.description.references Marcuvitz, N. (1986). Waveguide Handbook. doi:10.1049/pbew021e es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem