Mostrar el registro sencillo del ítem
dc.contributor.author | Carbonell Olivares, Jorge | es_ES |
dc.contributor.author | Torrent Martí, Daniel | es_ES |
dc.contributor.author | Díaz Rubio, Ana | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.date.accessioned | 2013-04-29T08:52:48Z | |
dc.date.available | 2013-04-29T08:52:48Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1367-2630 | |
dc.identifier.uri | http://hdl.handle.net/10251/28288 | |
dc.description.abstract | Anisotropic characteristics of cylindrically corrugated microstructures are analyzed in terms of their acoustic and electromagnetic (EM) behavior paying special attention to their differences and similarities. A simple analytical model has been developed using effective medium theory to understand the anisotropic features of both types of waves in terms of radial and angular components of the wave propagation velocity. The anisotropic constituent parameters have been obtained by measuring the resonances of cylindrical cavities, as well as from numerical simulations. This permits one to characterize propagation of acoustic and EM waves and to compare the fundamental anisotropic features generated by the corrugated effective medium. Anisotropic coefficients match closely in both physics fields but other relevant parameters show significant differences in the behavior of both types of waves. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. | es_ES |
dc.description.sponsorship | The authors acknowledge financial support from the Spanish MICINN (TEC 2010-19751 and Consolider CSD2008-00066) and from the US Office of Naval Research (N000140910554). DT also acknowledges support from the program 'Campus de Excelencia Internacional 2010 UPV'. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Open Access Journals | es_ES |
dc.relation.ispartof | New Journal of Physics | es_ES |
dc.rights | Reconocimiento - No comercial - Compartir igual (by-nc-sa) | es_ES |
dc.subject | Analytical model | es_ES |
dc.subject | Anisotropic features | es_ES |
dc.subject | Anisotropic metamaterials | es_ES |
dc.subject | Corrugated microstructure | es_ES |
dc.subject | Cylindrical cavities | es_ES |
dc.subject | Effective medium | es_ES |
dc.subject | Effective medium theories | es_ES |
dc.subject | Multi-disciplinary approach | es_ES |
dc.subject | Wave propagation velocities | es_ES |
dc.subject | Acoustic wave propagation | es_ES |
dc.subject | Anisotropy | es_ES |
dc.subject | Behavioral research | es_ES |
dc.subject | Computer simulation | es_ES |
dc.subject | Electromagnetic waves | es_ES |
dc.subject | Mathematical models | es_ES |
dc.subject | Metamaterials | es_ES |
dc.subject | Anisotropic media | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Multidisciplinary approach to cylindrical anisotropic metamaterials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/1367-2630/13/10/103034 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2008-00066/ES/Ingeniería de Metamateriales/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ONR//N00014-09-1-0554/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-19751/ES/NUEVOS DISPOSITIVOS BASADOS EN METAMATERIALES ELECTROMAGNETICOS Y ACUSTICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Carbonell Olivares, J.; Torrent Martí, D.; Díaz Rubio, A.; Sánchez-Dehesa Moreno-Cid, J. (2011). Multidisciplinary approach to cylindrical anisotropic metamaterials. New Journal of Physics. 13:103034-103034. https://doi.org/10.1088/1367-2630/13/10/103034 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/1367-2630/13/10/103034 | es_ES |
dc.description.upvformatpinicio | 103034 | es_ES |
dc.description.upvformatpfin | 103034 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.relation.senia | 202871 | |
dc.contributor.funder | Office of Naval Research | es_ES |
dc.description.references | Engheta, N., & Ziolkowski, R. W. (Eds.). (2006). Metamaterials. doi:10.1002/0471784192 | es_ES |
dc.description.references | Pendry, J. B. (2006). Controlling Electromagnetic Fields. Science, 312(5781), 1780-1782. doi:10.1126/science.1125907 | es_ES |
dc.description.references | Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966 | es_ES |
dc.description.references | Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2009). Radial Wave Crystals: Radially Periodic Structures from Anisotropic Metamaterials for Engineering Acoustic or Electromagnetic Waves. Physical Review Letters, 103(6). doi:10.1103/physrevlett.103.064301 | es_ES |
dc.description.references | Jacob, Z., Alekseyev, L. V., & Narimanov, E. (2006). Optical Hyperlens: Far-field imaging beyond the diffraction limit. Optics Express, 14(18), 8247. doi:10.1364/oe.14.008247 | es_ES |
dc.description.references | Bradley, C. E. (1994). Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part I. Theory. The Journal of the Acoustical Society of America, 96(3), 1844-1853. doi:10.1121/1.410196 | es_ES |
dc.description.references | Bradley, C. E. (1994). Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part II. Experiment. The Journal of the Acoustical Society of America, 96(3), 1854-1862. doi:10.1121/1.410197 | es_ES |
dc.description.references | Schoenberg, M., & Sen, P. N. (1983). Properties of a periodically stratified acoustic half‐space and its relation to a Biot fluid. The Journal of the Acoustical Society of America, 73(1), 61-67. doi:10.1121/1.388724 | es_ES |
dc.description.references | Peng, L., Ran, L., & Mortensen, N. A. (2010). Achieving anisotropy in metamaterials made of dielectric cylindrical rods. Applied Physics Letters, 96(24), 241108. doi:10.1063/1.3453446 | es_ES |
dc.description.references | Carbonell, J., Cervera, F., Sánchez-Dehesa, J., Arriaga, J., Gumen, L., & Krokhin, A. (2010). Homogenization of two-dimensional anisotropic dissipative photonic crystal. Applied Physics Letters, 97(23), 231122. doi:10.1063/1.3526381 | es_ES |
dc.description.references | Valero-Nogueira, A., Alfonso, E., Herranz, J. I., & Baquero, M. (2007). Planar slot-array antenna fed by an oversized quasi-TEM waveguide. Microwave and Optical Technology Letters, 49(8), 1875-1877. doi:10.1002/mop.22586 | es_ES |
dc.description.references | Ni, Y., Gao, L., & Qiu, C.-W. (2010). Achieving Invisibility of Homogeneous Cylindrically Anisotropic Cylinders. Plasmonics, 5(3), 251-258. doi:10.1007/s11468-010-9145-8 | es_ES |
dc.description.references | Huang, Y., Feng, Y., & Jiang, T. (2007). Electromagnetic cloaking by layered structure of homogeneous isotropic materials. Optics Express, 15(18), 11133. doi:10.1364/oe.15.011133 | es_ES |
dc.description.references | Elliott, R. (1954). On the theory of corrugated plane surfaces. Transactions of the IRE Professional Group on Antennas and Propagation, 2(2), 71-81. doi:10.1109/t-ap.1954.27975 | es_ES |
dc.description.references | Goubau, G. (1950). Surface Waves and Their Application to Transmission Lines. Journal of Applied Physics, 21(11), 1119-1128. doi:10.1063/1.1699553 | es_ES |
dc.description.references | Wang, B., Jin, Y., & He, S. (2008). Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies. Applied Optics, 47(21), 3694. doi:10.1364/ao.47.003694 | es_ES |
dc.description.references | Kildal, P.-S. (1990). Artificially soft and hard surfaces in electromagnetics. IEEE Transactions on Antennas and Propagation, 38(10), 1537-1544. doi:10.1109/8.59765 | es_ES |
dc.description.references | Giovannini, L., Nizzoli, F., & Marvin, A. M. (1992). Theory of surface acoustic phonon normal modes and light scattering cross section in a periodically corrugated surface. Physical Review Letters, 69(10), 1572-1575. doi:10.1103/physrevlett.69.1572 | es_ES |
dc.description.references | Lakhtakia, A., Varadan, V. K., & Varadan, V. V. (1985). On the acoustic response of a deeply corrugated periodic surface— A hybrid T‐matrix approach. The Journal of the Acoustical Society of America, 78(6), 2100-2104. doi:10.1121/1.392669 | es_ES |
dc.description.references | Kundu, T., Banerjee, S., & Jata, K. V. (2006). An experimental investigation of guided wave propagation in corrugated plates showing stop bands and pass bands. The Journal of the Acoustical Society of America, 120(3), 1217-1226. doi:10.1121/1.2221534 | es_ES |
dc.description.references | Torrent, D., & Sánchez-Dehesa, J. (2010). Anisotropic Mass Density by Radially Periodic Fluid Structures. Physical Review Letters, 105(17). doi:10.1103/physrevlett.105.174301 | es_ES |
dc.description.references | Chew, W. C. (1999). Waves and Fields in Inhomogenous Media. doi:10.1109/9780470547052 | es_ES |
dc.description.references | Smith, D. R., Vier, D. C., Koschny, T., & Soukoulis, C. M. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 71(3). doi:10.1103/physreve.71.036617 | es_ES |
dc.description.references | Fokin, V., Ambati, M., Sun, C., & Zhang, X. (2007). Method for retrieving effective properties of locally resonant acoustic metamaterials. Physical Review B, 76(14). doi:10.1103/physrevb.76.144302 | es_ES |
dc.description.references | Marcuvitz, N. (1986). Waveguide Handbook. doi:10.1049/pbew021e | es_ES |