- -

Effect of host species on the distribution of mutational fitness effects for an RNA virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of host species on the distribution of mutational fitness effects for an RNA virus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lalic ., Jasna es_ES
dc.contributor.author CUEVAS, J.M es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.date.accessioned 2013-04-30T13:48:37Z
dc.date.available 2013-04-30T13:48:37Z
dc.date.issued 2011-10-17
dc.identifier.issn 1553-7390
dc.identifier.uri http://hdl.handle.net/10251/28358
dc.description.abstract Knowledge about the distribution of mutational fitness effects (DMFE) is essential for many evolutionary models. In recent years, the properties of the DMFE have been carefully described for some microorganisms. In most cases, however, this information has been obtained only for a single environment, and very few studies have explored the effect that environmental variation may have on the DMFE. Environmental effects are particularly relevant for the evolution of multi-host parasites and thus for the emergence of new pathogens. Here we characterize the DMFE for a collection of twenty single-nucleotide substitution mutants of Tobacco etch potyvirus (TEV) across a set of eight host environments. Five of these host species were naturally infected by TEV, all belonging to family Solanaceae, whereas the other three were partially susceptible hosts belonging to three other plant families. First, we found a significant virus genotype-by-host species interaction, which was sustained by differences in genetic variance for fitness and the pleiotropic effect of mutations among hosts. Second, we found that the DMFEs were markedly different between Solanaceae and non-Solanaceae hosts. Exposure of TEV genotypes to non-Solanaceae hosts led to a large reduction of mean viral fitness, while the variance remained constant and skewness increased towards the right tail. Within the Solanaceae hosts, the distribution contained an excess of deleterious mutations, whereas for the non-Solanaceae the fraction of beneficial mutations was significantly larger. All together, this result suggests that TEV may easily broaden its host range and improve fitness in new hosts, and that knowledge about the DMFE in the natural host does not allow for making predictions about its properties in an alternative host. © 2011 Lali¿ et al. es_ES
dc.description.sponsorship This research was supported by the Spanish Ministry of Science and Innovation grant BFU2009-06993 to SFE. JL and JMC were supported by the JAE program from CSIC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS Genetics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Angiosperm es_ES
dc.subject Article es_ES
dc.subject Controlled study es_ES
dc.subject Distribution of mutational fitness effect es_ES
dc.subject Environmental factor es_ES
dc.subject Gene deletion es_ES
dc.subject Genetic variability es_ES
dc.subject Genotype es_ES
dc.subject Host es_ES
dc.subject Molecular evolution es_ES
dc.subject Nonhuman es_ES
dc.subject Nucleic acid base substitution es_ES
dc.subject Pleiotropy es_ES
dc.subject Potyvirus es_ES
dc.subject RNA virus es_ES
dc.subject Species difference es_ES
dc.subject Tobacco etch potyvirus es_ES
dc.subject Virus cell interaction es_ES
dc.subject Virus mutation es_ES
dc.subject RNA viruses es_ES
dc.subject Solanaceae es_ES
dc.subject Tobacco etch virus es_ES
dc.title Effect of host species on the distribution of mutational fitness effects for an RNA virus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pgen.1002378
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Lalic ., J.; Cuevas, J.; Elena Fito, SF. (2011). Effect of host species on the distribution of mutational fitness effects for an RNA virus. PLoS Genetics. 7:1002378-1002378. https://doi.org/10.1371/journal.pgen.1002378 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1002378 es_ES
dc.description.upvformatpinicio 1002378 es_ES
dc.description.upvformatpfin 1002378 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.relation.senia 218206
dc.identifier.pmid 22125497 en_EN
dc.identifier.pmcid PMC3219607 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Woolhouse, M. E. J., Haydon, D. T., & Antia, R. (2005). Emerging pathogens: the epidemiology and evolution of species jumps. Trends in Ecology & Evolution, 20(5), 238-244. doi:10.1016/j.tree.2005.02.009 es_ES
dc.description.references Parrish, C. R., Holmes, E. C., Morens, D. M., Park, E.-C., Burke, D. S., Calisher, C. H., … Daszak, P. (2008). Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases. Microbiology and Molecular Biology Reviews, 72(3), 457-470. doi:10.1128/mmbr.00004-08 es_ES
dc.description.references Holmes, E. C. (2009). The Evolutionary Genetics of Emerging Viruses. Annual Review of Ecology, Evolution, and Systematics, 40(1), 353-372. doi:10.1146/annurev.ecolsys.110308.120248 es_ES
dc.description.references Elena, S. F., & Froissart, R. (2010). New experimental and theoretical approaches towards the understanding of the emergence of viral infections. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1867-1869. doi:10.1098/rstb.2010.0088 es_ES
dc.description.references Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19(10), 535-544. doi:10.1016/j.tree.2004.07.021 es_ES
dc.description.references Jones, R. A. C. (2009). Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research, 141(2), 113-130. doi:10.1016/j.virusres.2008.07.028 es_ES
dc.description.references Elena, S. F., Bedhomme, S., Carrasco, P., Cuevas, J. M., de la Iglesia, F., Lafforgue, G., … Zwart, M. P. (2011). The Evolutionary Genetics of Emerging Plant RNA Viruses. Molecular Plant-Microbe Interactions, 24(3), 287-293. doi:10.1094/mpmi-09-10-0214 es_ES
dc.description.references Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral Mutation Rates. Journal of Virology, 84(19), 9733-9748. doi:10.1128/jvi.00694-10 es_ES
dc.description.references Duffy, S., Turner, P. E., & Burch, C. L. (2005). Pleiotropic Costs of Niche Expansion in the RNA Bacteriophage Φ6. Genetics, 172(2), 751-757. doi:10.1534/genetics.105.051136 es_ES
dc.description.references Ferris, M. T., Joyce, P., & Burch, C. L. (2007). High Frequency of Mutations That Expand the Host Range of an RNA Virus. Genetics, 176(2), 1013-1022. doi:10.1534/genetics.106.064634 es_ES
dc.description.references Agudelo-Romero, P., de la Iglesia, F., & Elena, S. F. (2008). The pleiotropic cost of host-specialization in Tobacco etch potyvirus. Infection, Genetics and Evolution, 8(6), 806-814. doi:10.1016/j.meegid.2008.07.010 es_ES
dc.description.references Gandon, S. (2004). EVOLUTION OF MULTIHOST PARASITES. Evolution, 58(3), 455-469. doi:10.1111/j.0014-3820.2004.tb01669.x es_ES
dc.description.references Remold, S. K., Rambaut, A., & Turner, P. E. (2008). Evolutionary Genomics of Host Adaptation in Vesicular Stomatitis Virus. Molecular Biology and Evolution, 25(6), 1138-1147. doi:10.1093/molbev/msn059 es_ES
dc.description.references Domingo-Calap, P., Cuevas, J. M., & Sanjuán, R. (2009). The Fitness Effects of Random Mutations in Single-Stranded DNA and RNA Bacteriophages. PLoS Genetics, 5(11), e1000742. doi:10.1371/journal.pgen.1000742 es_ES
dc.description.references Peris, J. B., Davis, P., Cuevas, J. M., Nebot, M. R., & Sanjuán, R. (2010). Distribution of Fitness Effects Caused by Single-Nucleotide Substitutions in Bacteriophage f1. Genetics, 185(2), 603-609. doi:10.1534/genetics.110.115162 es_ES
dc.description.references Elena, & Moya. (1999). Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus. Journal of Evolutionary Biology, 12(6), 1078-1088. doi:10.1046/j.1420-9101.1999.00110.x es_ES
dc.description.references Sanjuan, R., Moya, A., & Elena, S. F. (2004). The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proceedings of the National Academy of Sciences, 101(22), 8396-8401. doi:10.1073/pnas.0400146101 es_ES
dc.description.references Carrasco, P., de la Iglesia, F., & Elena, S. F. (2007). Distribution of Fitness and Virulence Effects Caused by Single-Nucleotide Substitutions in Tobacco Etch Virus. Journal of Virology, 81(23), 12979-12984. doi:10.1128/jvi.00524-07 es_ES
dc.description.references Sanjuán, R. (2010). Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1975-1982. doi:10.1098/rstb.2010.0063 es_ES
dc.description.references Van Opijnen, T., Boerlijst, M. C., & Berkhout, B. (2006). Effects of Random Mutations in the Human Immunodeficiency Virus Type 1 Transcriptional Promoter on Viral Fitness in Different Host Cell Environments. Journal of Virology, 80(13), 6678-6685. doi:10.1128/jvi.02547-05 es_ES
dc.description.references Hodgins-Davis, A., & Townsend, J. P. (2009). Evolving gene expression: from G to E to G×E. Trends in Ecology & Evolution, 24(12), 649-658. doi:10.1016/j.tree.2009.06.011 es_ES
dc.description.references Futuyma, D. J., & Moreno, G. (1988). The Evolution of Ecological Specialization. Annual Review of Ecology and Systematics, 19(1), 207-233. doi:10.1146/annurev.es.19.110188.001231 es_ES
dc.description.references Remold, S. K., & Lenski, R. E. (2001). Contribution of individual random mutations to genotype-by-environment interactions in Escherichia coli. Proceedings of the National Academy of Sciences, 98(20), 11388-11393. doi:10.1073/pnas.201140198 es_ES
dc.description.references Soltis, E. D., & Soltis, P. S. (2000). Plant Molecular Biology, 42(1), 45-75. doi:10.1023/a:1006371803911 es_ES
dc.description.references Novella, I. S., Zárate, S., Metzgar, D., & Ebendick-Corpus, B. E. (2004). Positive Selection of Synonymous Mutations in Vesicular Stomatitis Virus. Journal of Molecular Biology, 342(5), 1415-1421. doi:10.1016/j.jmb.2004.08.003 es_ES
dc.description.references Ohta, T. (1992). The Nearly Neutral Theory of Molecular Evolution. Annual Review of Ecology and Systematics, 23(1), 263-286. doi:10.1146/annurev.es.23.110192.001403 es_ES
dc.description.references Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution, 19(2), 101-108. doi:10.1016/j.tree.2003.10.013 es_ES
dc.description.references Martin, G., & Lenormand, T. (2006). THE FITNESS EFFECT OF MUTATIONS ACROSS ENVIRONMENTS: A SURVEY IN LIGHT OF FITNESS LANDSCAPE MODELS. Evolution, 60(12), 2413-2427. doi:10.1111/j.0014-3820.2006.tb01878.x es_ES
dc.description.references Eyre-Walker, A., & Keightley, P. D. (2007). The distribution of fitness effects of new mutations. Nature Reviews Genetics, 8(8), 610-618. doi:10.1038/nrg2146 es_ES
dc.description.references Wylie, C. S., & Shakhnovich, E. I. (2011). A biophysical protein folding model accounts for most mutational fitness effects in viruses. Proceedings of the National Academy of Sciences, 108(24), 9916-9921. doi:10.1073/pnas.1017572108 es_ES
dc.description.references Genotype—environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. (1994). Proceedings of the Royal Society of London. Series B: Biological Sciences, 258(1353), 221-227. doi:10.1098/rspb.1994.0166 es_ES
dc.description.references Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S. M., Schlichting, C. D., & Van Tienderen, P. H. (1995). Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology & Evolution, 10(5), 212-217. doi:10.1016/s0169-5347(00)89061-8 es_ES
dc.description.references Korona, R. (1999). Genetic Load of the Yeast Saccharomyces cerevisiae under Diverse Environmental Conditions. Evolution, 53(6), 1966. doi:10.2307/2640455 es_ES
dc.description.references Auld, J. R., Agrawal, A. A., & Relyea, R. A. (2009). Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 277(1681), 503-511. doi:10.1098/rspb.2009.1355 es_ES
dc.description.references Fry, J. D., Heinsohn, S. L., & Mackay, T. F. C. (1996). The Contribution of New Mutations to Genotype-Environment Interaction for Fitness in Drosophila melanogaster. Evolution, 50(6), 2316. doi:10.2307/2410700 es_ES
dc.description.references Elena, S. F., Agudelo-Romero, P., Carrasco, P., Codoñer, F. M., Martín, S., Torres-Barceló, C., & Sanjuán, R. (2008). Experimental evolution of plant RNA viruses. Heredity, 100(5), 478-483. doi:10.1038/sj.hdy.6801088 es_ES
dc.description.references Ayme, V., Souche, S., Caranta, C., Jacquemond, M., Chadœuf, J., Palloix, A., & Moury, B. (2006). Different Mutations in the Genome-Linked Protein VPg of Potato virus Y Confer Virulence on the pvr23 Resistance in Pepper. Molecular Plant-Microbe Interactions, 19(5), 557-563. doi:10.1094/mpmi-19-0557 es_ES
dc.description.references Charron, C., Nicolaï, M., Gallois, J.-L., Robaglia, C., Moury, B., Palloix, A., & Caranta, C. (2008). Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. The Plant Journal, 54(1), 56-68. doi:10.1111/j.1365-313x.2008.03407.x es_ES
dc.description.references Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004 es_ES
dc.description.references Carrasco, P., Daròs, J. A., Agudelo-Romero, P., & Elena, S. F. (2007). A real-time RT-PCR assay for quantifying the fitness of tobacco etch virus in competition experiments. Journal of Virological Methods, 139(2), 181-188. doi:10.1016/j.jviromet.2006.09.020 es_ES
dc.description.references Lalić, J., Agudelo-Romero, P., Carrasco, P., & Elena, S. F. (2010). Adaptation of tobacco etch potyvirus to a susceptible ecotype of Arabidopsis thaliana capacitates it for systemic infection of resistant ecotypes. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1997-2007. doi:10.1098/rstb.2010.0044 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem