Mostrar el registro sencillo del ítem
dc.contributor.author | Lalic ., Jasna | es_ES |
dc.contributor.author | CUEVAS, J.M | es_ES |
dc.contributor.author | Elena Fito, Santiago Fco | es_ES |
dc.date.accessioned | 2013-04-30T13:48:37Z | |
dc.date.available | 2013-04-30T13:48:37Z | |
dc.date.issued | 2011-10-17 | |
dc.identifier.issn | 1553-7390 | |
dc.identifier.uri | http://hdl.handle.net/10251/28358 | |
dc.description.abstract | Knowledge about the distribution of mutational fitness effects (DMFE) is essential for many evolutionary models. In recent years, the properties of the DMFE have been carefully described for some microorganisms. In most cases, however, this information has been obtained only for a single environment, and very few studies have explored the effect that environmental variation may have on the DMFE. Environmental effects are particularly relevant for the evolution of multi-host parasites and thus for the emergence of new pathogens. Here we characterize the DMFE for a collection of twenty single-nucleotide substitution mutants of Tobacco etch potyvirus (TEV) across a set of eight host environments. Five of these host species were naturally infected by TEV, all belonging to family Solanaceae, whereas the other three were partially susceptible hosts belonging to three other plant families. First, we found a significant virus genotype-by-host species interaction, which was sustained by differences in genetic variance for fitness and the pleiotropic effect of mutations among hosts. Second, we found that the DMFEs were markedly different between Solanaceae and non-Solanaceae hosts. Exposure of TEV genotypes to non-Solanaceae hosts led to a large reduction of mean viral fitness, while the variance remained constant and skewness increased towards the right tail. Within the Solanaceae hosts, the distribution contained an excess of deleterious mutations, whereas for the non-Solanaceae the fraction of beneficial mutations was significantly larger. All together, this result suggests that TEV may easily broaden its host range and improve fitness in new hosts, and that knowledge about the DMFE in the natural host does not allow for making predictions about its properties in an alternative host. © 2011 Lali¿ et al. | es_ES |
dc.description.sponsorship | This research was supported by the Spanish Ministry of Science and Innovation grant BFU2009-06993 to SFE. JL and JMC were supported by the JAE program from CSIC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS Genetics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Angiosperm | es_ES |
dc.subject | Article | es_ES |
dc.subject | Controlled study | es_ES |
dc.subject | Distribution of mutational fitness effect | es_ES |
dc.subject | Environmental factor | es_ES |
dc.subject | Gene deletion | es_ES |
dc.subject | Genetic variability | es_ES |
dc.subject | Genotype | es_ES |
dc.subject | Host | es_ES |
dc.subject | Molecular evolution | es_ES |
dc.subject | Nonhuman | es_ES |
dc.subject | Nucleic acid base substitution | es_ES |
dc.subject | Pleiotropy | es_ES |
dc.subject | Potyvirus | es_ES |
dc.subject | RNA virus | es_ES |
dc.subject | Species difference | es_ES |
dc.subject | Tobacco etch potyvirus | es_ES |
dc.subject | Virus cell interaction | es_ES |
dc.subject | Virus mutation | es_ES |
dc.subject | RNA viruses | es_ES |
dc.subject | Solanaceae | es_ES |
dc.subject | Tobacco etch virus | es_ES |
dc.title | Effect of host species on the distribution of mutational fitness effects for an RNA virus | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pgen.1002378 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Lalic ., J.; Cuevas, J.; Elena Fito, SF. (2011). Effect of host species on the distribution of mutational fitness effects for an RNA virus. PLoS Genetics. 7:1002378-1002378. https://doi.org/10.1371/journal.pgen.1002378 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1002378 | es_ES |
dc.description.upvformatpinicio | 1002378 | es_ES |
dc.description.upvformatpfin | 1002378 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.relation.senia | 218206 | |
dc.identifier.pmid | 22125497 | en_EN |
dc.identifier.pmcid | PMC3219607 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.description.references | Woolhouse, M. E. J., Haydon, D. T., & Antia, R. (2005). Emerging pathogens: the epidemiology and evolution of species jumps. Trends in Ecology & Evolution, 20(5), 238-244. doi:10.1016/j.tree.2005.02.009 | es_ES |
dc.description.references | Parrish, C. R., Holmes, E. C., Morens, D. M., Park, E.-C., Burke, D. S., Calisher, C. H., … Daszak, P. (2008). Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases. Microbiology and Molecular Biology Reviews, 72(3), 457-470. doi:10.1128/mmbr.00004-08 | es_ES |
dc.description.references | Holmes, E. C. (2009). The Evolutionary Genetics of Emerging Viruses. Annual Review of Ecology, Evolution, and Systematics, 40(1), 353-372. doi:10.1146/annurev.ecolsys.110308.120248 | es_ES |
dc.description.references | Elena, S. F., & Froissart, R. (2010). New experimental and theoretical approaches towards the understanding of the emergence of viral infections. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1867-1869. doi:10.1098/rstb.2010.0088 | es_ES |
dc.description.references | Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19(10), 535-544. doi:10.1016/j.tree.2004.07.021 | es_ES |
dc.description.references | Jones, R. A. C. (2009). Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Research, 141(2), 113-130. doi:10.1016/j.virusres.2008.07.028 | es_ES |
dc.description.references | Elena, S. F., Bedhomme, S., Carrasco, P., Cuevas, J. M., de la Iglesia, F., Lafforgue, G., … Zwart, M. P. (2011). The Evolutionary Genetics of Emerging Plant RNA Viruses. Molecular Plant-Microbe Interactions, 24(3), 287-293. doi:10.1094/mpmi-09-10-0214 | es_ES |
dc.description.references | Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M., & Belshaw, R. (2010). Viral Mutation Rates. Journal of Virology, 84(19), 9733-9748. doi:10.1128/jvi.00694-10 | es_ES |
dc.description.references | Duffy, S., Turner, P. E., & Burch, C. L. (2005). Pleiotropic Costs of Niche Expansion in the RNA Bacteriophage Φ6. Genetics, 172(2), 751-757. doi:10.1534/genetics.105.051136 | es_ES |
dc.description.references | Ferris, M. T., Joyce, P., & Burch, C. L. (2007). High Frequency of Mutations That Expand the Host Range of an RNA Virus. Genetics, 176(2), 1013-1022. doi:10.1534/genetics.106.064634 | es_ES |
dc.description.references | Agudelo-Romero, P., de la Iglesia, F., & Elena, S. F. (2008). The pleiotropic cost of host-specialization in Tobacco etch potyvirus. Infection, Genetics and Evolution, 8(6), 806-814. doi:10.1016/j.meegid.2008.07.010 | es_ES |
dc.description.references | Gandon, S. (2004). EVOLUTION OF MULTIHOST PARASITES. Evolution, 58(3), 455-469. doi:10.1111/j.0014-3820.2004.tb01669.x | es_ES |
dc.description.references | Remold, S. K., Rambaut, A., & Turner, P. E. (2008). Evolutionary Genomics of Host Adaptation in Vesicular Stomatitis Virus. Molecular Biology and Evolution, 25(6), 1138-1147. doi:10.1093/molbev/msn059 | es_ES |
dc.description.references | Domingo-Calap, P., Cuevas, J. M., & Sanjuán, R. (2009). The Fitness Effects of Random Mutations in Single-Stranded DNA and RNA Bacteriophages. PLoS Genetics, 5(11), e1000742. doi:10.1371/journal.pgen.1000742 | es_ES |
dc.description.references | Peris, J. B., Davis, P., Cuevas, J. M., Nebot, M. R., & Sanjuán, R. (2010). Distribution of Fitness Effects Caused by Single-Nucleotide Substitutions in Bacteriophage f1. Genetics, 185(2), 603-609. doi:10.1534/genetics.110.115162 | es_ES |
dc.description.references | Elena, & Moya. (1999). Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus. Journal of Evolutionary Biology, 12(6), 1078-1088. doi:10.1046/j.1420-9101.1999.00110.x | es_ES |
dc.description.references | Sanjuan, R., Moya, A., & Elena, S. F. (2004). The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proceedings of the National Academy of Sciences, 101(22), 8396-8401. doi:10.1073/pnas.0400146101 | es_ES |
dc.description.references | Carrasco, P., de la Iglesia, F., & Elena, S. F. (2007). Distribution of Fitness and Virulence Effects Caused by Single-Nucleotide Substitutions in Tobacco Etch Virus. Journal of Virology, 81(23), 12979-12984. doi:10.1128/jvi.00524-07 | es_ES |
dc.description.references | Sanjuán, R. (2010). Mutational fitness effects in RNA and single-stranded DNA viruses: common patterns revealed by site-directed mutagenesis studies. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1975-1982. doi:10.1098/rstb.2010.0063 | es_ES |
dc.description.references | Van Opijnen, T., Boerlijst, M. C., & Berkhout, B. (2006). Effects of Random Mutations in the Human Immunodeficiency Virus Type 1 Transcriptional Promoter on Viral Fitness in Different Host Cell Environments. Journal of Virology, 80(13), 6678-6685. doi:10.1128/jvi.02547-05 | es_ES |
dc.description.references | Hodgins-Davis, A., & Townsend, J. P. (2009). Evolving gene expression: from G to E to G×E. Trends in Ecology & Evolution, 24(12), 649-658. doi:10.1016/j.tree.2009.06.011 | es_ES |
dc.description.references | Futuyma, D. J., & Moreno, G. (1988). The Evolution of Ecological Specialization. Annual Review of Ecology and Systematics, 19(1), 207-233. doi:10.1146/annurev.es.19.110188.001231 | es_ES |
dc.description.references | Remold, S. K., & Lenski, R. E. (2001). Contribution of individual random mutations to genotype-by-environment interactions in Escherichia coli. Proceedings of the National Academy of Sciences, 98(20), 11388-11393. doi:10.1073/pnas.201140198 | es_ES |
dc.description.references | Soltis, E. D., & Soltis, P. S. (2000). Plant Molecular Biology, 42(1), 45-75. doi:10.1023/a:1006371803911 | es_ES |
dc.description.references | Novella, I. S., Zárate, S., Metzgar, D., & Ebendick-Corpus, B. E. (2004). Positive Selection of Synonymous Mutations in Vesicular Stomatitis Virus. Journal of Molecular Biology, 342(5), 1415-1421. doi:10.1016/j.jmb.2004.08.003 | es_ES |
dc.description.references | Ohta, T. (1992). The Nearly Neutral Theory of Molecular Evolution. Annual Review of Ecology and Systematics, 23(1), 263-286. doi:10.1146/annurev.es.23.110192.001403 | es_ES |
dc.description.references | Johnson, J. B., & Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution, 19(2), 101-108. doi:10.1016/j.tree.2003.10.013 | es_ES |
dc.description.references | Martin, G., & Lenormand, T. (2006). THE FITNESS EFFECT OF MUTATIONS ACROSS ENVIRONMENTS: A SURVEY IN LIGHT OF FITNESS LANDSCAPE MODELS. Evolution, 60(12), 2413-2427. doi:10.1111/j.0014-3820.2006.tb01878.x | es_ES |
dc.description.references | Eyre-Walker, A., & Keightley, P. D. (2007). The distribution of fitness effects of new mutations. Nature Reviews Genetics, 8(8), 610-618. doi:10.1038/nrg2146 | es_ES |
dc.description.references | Wylie, C. S., & Shakhnovich, E. I. (2011). A biophysical protein folding model accounts for most mutational fitness effects in viruses. Proceedings of the National Academy of Sciences, 108(24), 9916-9921. doi:10.1073/pnas.1017572108 | es_ES |
dc.description.references | Genotype—environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. (1994). Proceedings of the Royal Society of London. Series B: Biological Sciences, 258(1353), 221-227. doi:10.1098/rspb.1994.0166 | es_ES |
dc.description.references | Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S. M., Schlichting, C. D., & Van Tienderen, P. H. (1995). Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology & Evolution, 10(5), 212-217. doi:10.1016/s0169-5347(00)89061-8 | es_ES |
dc.description.references | Korona, R. (1999). Genetic Load of the Yeast Saccharomyces cerevisiae under Diverse Environmental Conditions. Evolution, 53(6), 1966. doi:10.2307/2640455 | es_ES |
dc.description.references | Auld, J. R., Agrawal, A. A., & Relyea, R. A. (2009). Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society B: Biological Sciences, 277(1681), 503-511. doi:10.1098/rspb.2009.1355 | es_ES |
dc.description.references | Fry, J. D., Heinsohn, S. L., & Mackay, T. F. C. (1996). The Contribution of New Mutations to Genotype-Environment Interaction for Fitness in Drosophila melanogaster. Evolution, 50(6), 2316. doi:10.2307/2410700 | es_ES |
dc.description.references | Elena, S. F., Agudelo-Romero, P., Carrasco, P., Codoñer, F. M., Martín, S., Torres-Barceló, C., & Sanjuán, R. (2008). Experimental evolution of plant RNA viruses. Heredity, 100(5), 478-483. doi:10.1038/sj.hdy.6801088 | es_ES |
dc.description.references | Ayme, V., Souche, S., Caranta, C., Jacquemond, M., Chadœuf, J., Palloix, A., & Moury, B. (2006). Different Mutations in the Genome-Linked Protein VPg of Potato virus Y Confer Virulence on the pvr23 Resistance in Pepper. Molecular Plant-Microbe Interactions, 19(5), 557-563. doi:10.1094/mpmi-19-0557 | es_ES |
dc.description.references | Charron, C., Nicolaï, M., Gallois, J.-L., Robaglia, C., Moury, B., Palloix, A., & Caranta, C. (2008). Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. The Plant Journal, 54(1), 56-68. doi:10.1111/j.1365-313x.2008.03407.x | es_ES |
dc.description.references | Bedoya, L. C., & Daròs, J.-A. (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Research, 149(2), 234-240. doi:10.1016/j.virusres.2010.02.004 | es_ES |
dc.description.references | Carrasco, P., Daròs, J. A., Agudelo-Romero, P., & Elena, S. F. (2007). A real-time RT-PCR assay for quantifying the fitness of tobacco etch virus in competition experiments. Journal of Virological Methods, 139(2), 181-188. doi:10.1016/j.jviromet.2006.09.020 | es_ES |
dc.description.references | Lalić, J., Agudelo-Romero, P., Carrasco, P., & Elena, S. F. (2010). Adaptation of tobacco etch potyvirus to a susceptible ecotype of Arabidopsis thaliana capacitates it for systemic infection of resistant ecotypes. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1548), 1997-2007. doi:10.1098/rstb.2010.0044 | es_ES |