- -

Differences in accumulation and virulence determine the outcome of competition during Tobacco etch virus coinfection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Differences in accumulation and virulence determine the outcome of competition during Tobacco etch virus coinfection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lafforgue, Guillaume es_ES
dc.contributor.author Sardanyes Cayuela, Jose es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.date.accessioned 2013-05-02T09:44:18Z
dc.date.available 2013-05-02T09:44:18Z
dc.date.issued 2011-03-15
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/28386
dc.description.abstract [EN] Understanding the evolution of virulence for RNA viruses is essential for developing appropriate control strategies. Although it has been usually assumed that virulence is a consequence of within-host replication of the parasite, viral strains may be highly virulent without experiencing large accumulation as a consequence of immunopathological host responses. Using two strains of Tobacco etch potyvirus (TEV) that show a negative relationship between virulence and accumulation rate, we first explored the evolution of virulence and fitness traits during simple and mixed infections. Short-term evolution experiments initiated with each strain independently confirmed the genetic and evolutionary stability of virulence and viral load, although infectivity significantly increased for both strains. Second, competition experiments between hypo- and hypervirulent TEV strains have shown that the outcome of competition is driven by differences in replication rate. A simple mathematical model has been developed to analyze the dynamics of these two strains during coinfection. The model qualitatively reproduced the experimental results using biologically meaningful parameters. Further analyses of the model also revealed a wide parametric region in which a low-fitness but hypovirulent virus can still outcompete a high-fitness but hypervirulent one. These results provide additional support es_ES
dc.description.sponsorship This work was funded by grants from the Human Frontier Science Program Organization (RGP12/2008), the Spanish Ministerio de Ciencia e Innovacion (BFU2009-06993) and the Generalitat Valenciana (PROMETEO2010/019). The authors also acknowledge support from the Santa Fe Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Differences in accumulation and virulence determine the outcome of competition during Tobacco etch virus coinfection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0017917
dc.relation.projectID info:eu-repo/grantAgreement/HFSP//RGP0012%2F2008/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F019/ES/Implicaciones evolutivas de la supresión del silenciamiento del RNA por parte de proteína virales/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Lafforgue, G.; Sardanyes Cayuela, J.; Elena Fito, SF. (2011). Differences in accumulation and virulence determine the outcome of competition during Tobacco etch virus coinfection. PLoS ONE. 6:17917-17917. https://doi.org/10.1371/journal.pone.0017917 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1371/journal.pone.0017917 es_ES
dc.description.upvformatpinicio 17917 es_ES
dc.description.upvformatpfin 17917 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.relation.senia 218186
dc.identifier.pmid 21423618 en_EN
dc.identifier.pmcid PMC3057992 en_EN
dc.contributor.funder Human Frontier Science Program Organization
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Generalitat Valenciana
dc.description.references Roossinck, M. J. (2003). Plant RNA virus evolution. Current Opinion in Microbiology, 6(4), 406-409. doi:10.1016/s1369-5274(03)00087-0 es_ES
dc.description.references Elena, S. F., Agudelo-Romero, P., Carrasco, P., Codoñer, F. M., Martín, S., Torres-Barceló, C., & Sanjuán, R. (2008). Experimental evolution of plant RNA viruses. Heredity, 100(5), 478-483. doi:10.1038/sj.hdy.6801088 es_ES
dc.description.references Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. doi:10.1038/nature05286 es_ES
dc.description.references Elena, S. F., & Sanjuán, R. (2007). Virus Evolution: Insights from an Experimental Approach. Annual Review of Ecology, Evolution, and Systematics, 38(1), 27-52. doi:10.1146/annurev.ecolsys.38.091206.095637 es_ES
dc.description.references Read, A. F. (1994). The evolution of virulence. Trends in Microbiology, 2(3), 73-76. doi:10.1016/0966-842x(94)90537-1 es_ES
dc.description.references Lenski, R. E., & May, R. M. (1994). The Evolution of Virulence in Parasites and Pathogens: Reconciliation Between Two Competing Hypotheses. Journal of Theoretical Biology, 169(3), 253-265. doi:10.1006/jtbi.1994.1146 es_ES
dc.description.references Ebert, D., & Bull, J. J. (2003). Challenging the trade-off model for the evolution of virulence: is virulence management feasible? Trends in Microbiology, 11(1), 15-20. doi:10.1016/s0966-842x(02)00003-3 es_ES
dc.description.references Alizon, S., & van Baalen, M. (2008). Transmission–virulence trade-offs in vector-borne diseases. Theoretical Population Biology, 74(1), 6-15. doi:10.1016/j.tpb.2008.04.003 es_ES
dc.description.references Anderson, R. M., & May, R. M. (1982). Coevolution of hosts and parasites. Parasitology, 85(2), 411-426. doi:10.1017/s0031182000055360 es_ES
dc.description.references Frank, S. A. (1996). Models of Parasite Virulence. The Quarterly Review of Biology, 71(1), 37-78. doi:10.1086/419267 es_ES
dc.description.references Pagán, I., Alonso-Blanco, C., & García-Arenal, F. (2007). The Relationship of Within-Host Multiplication and Virulence in a Plant-Virus System. PLoS ONE, 2(8), e786. doi:10.1371/journal.pone.0000786 es_ES
dc.description.references Stewart, A. D., Logsdon, J. M., & Kelley, S. E. (2005). AN EMPIRICAL STUDY OF THE EVOLUTION OF VIRULENCE UNDER BOTH HORIZONTAL AND VERTICAL TRANSMISSION. Evolution, 59(4), 730-739. doi:10.1111/j.0014-3820.2005.tb01749.x es_ES
dc.description.references LIPSITCH, M., & MOXON, E. (1997). Virulence and transmissibility of pathogens: what is the relationship? Trends in Microbiology, 5(1), 31-37. doi:10.1016/s0966-842x(97)81772-6 es_ES
dc.description.references Coinfection and the evolution of parasite virulence. (1995). Proceedings of the Royal Society of London. Series B: Biological Sciences, 261(1361), 209-215. doi:10.1098/rspb.1995.0138 es_ES
dc.description.references Mosquera, J., & Adler, F. R. (1998). Evolution of Virulence: a Unified Framework for Coinfection and Superinfection. Journal of Theoretical Biology, 195(3), 293-313. doi:10.1006/jtbi.1998.0793 es_ES
dc.description.references Levin, B. R., & Bull, J. J. (1994). Short-sighted evolution and the virulence of pathogenic microorganisms. Trends in Microbiology, 2(3), 76-81. doi:10.1016/0966-842x(94)90538-x es_ES
dc.description.references Carrasco, P., de la Iglesia, F., & Elena, S. F. (2007). Distribution of Fitness and Virulence Effects Caused by Single-Nucleotide Substitutions in Tobacco Etch Virus. Journal of Virology, 81(23), 12979-12984. doi:10.1128/jvi.00524-07 es_ES
dc.description.references De Visser, J. A. G., & Lenski, R. E. (2002). BMC Evolutionary Biology, 2(1), 19. doi:10.1186/1471-2148-2-19 es_ES
dc.description.references Solé, R. V., Ferrer, R., González-Garcı́a, I., Quer, J., & Domingo, E. (1999). Red Queen Dynamics, Competition and Critical Points in a Model of RNA Virus Quasispecies. Journal of Theoretical Biology, 198(1), 47-59. doi:10.1006/jtbi.1999.0901 es_ES
dc.description.references Fox, D. T., & Williams, P. H. (1984). Correlation of spore production byAlbugo CandidaonBrassica campestrisand a visual white rust rating scale. Canadian Journal of Plant Pathology, 6(2), 175-178. doi:10.1080/07060668409501580 es_ES
dc.description.references Kaltz, O., & Shykoff, J. A. (2002). Within- and among-population variation in infectivity, latency and spore production in a host-pathogen system. Journal of Evolutionary Biology, 15(5), 850-860. doi:10.1046/j.1420-9101.2002.00433.x es_ES
dc.description.references MONTARRY, J., CORBIERE, R., LESUEUR, S., GLAIS, I., & ANDRIVON, D. (2006). Does selection by resistant hosts trigger local adaptation in plant-pathogen systems? Journal of Evolutionary Biology, 19(2), 522-531. doi:10.1111/j.1420-9101.2005.01005.x es_ES
dc.description.references Wang, I.-N. (2005). Lysis Timing and Bacteriophage Fitness. Genetics, 172(1), 17-26. doi:10.1534/genetics.105.045922 es_ES
dc.description.references Carr, D. E., Murphy, J. F., & Eubanks, M. D. (2005). Genetic variation and covariation for resistance and tolerance to Cucumber mosaic virus in Mimulus guttatus (Phrymaceae): a test for costs and constraints. Heredity, 96(1), 29-38. doi:10.1038/sj.hdy.6800743 es_ES
dc.description.references Escriu, F., Fraile, A., & García-Arenal, F. (2003). THE EVOLUTION OF VIRULENCE IN A PLANT VIRUS. Evolution, 57(4), 755-765. doi:10.1111/j.0014-3820.2003.tb00287.x es_ES
dc.description.references GAL-ON, A. (2007). Zucchini yellow mosaic virus: insect transmission and pathogenicity ?the tails of two proteins. Molecular Plant Pathology, 8(2), 139-150. doi:10.1111/j.1364-3703.2007.00381.x es_ES
dc.description.references Zhan, J., Mundt, C. C., Hoffer, M. E., & McDonald, B. A. (2002). Local adaptation and effect of host genotype on the rate of pathogen evolution: an experimental test in a plant pathosystem. Journal of Evolutionary Biology, 15(4), 634-647. doi:10.1046/j.1420-9101.2002.00428.x es_ES
dc.description.references Bremermann, H. J., & Pickering, J. (1983). A game-theoretical model of parasite virulence. Journal of Theoretical Biology, 100(3), 411-426. doi:10.1016/0022-5193(83)90438-1 es_ES
dc.description.references Dolja, V. V., McBride, H. J., & Carrington, J. C. (1992). Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proceedings of the National Academy of Sciences, 89(21), 10208-10212. doi:10.1073/pnas.89.21.10208 es_ES
dc.description.references Kleczkowski, A. (1950). Interpreting Relationships between the Concentrations of Plant Viruses and Numbers of Local Lesions. Journal of General Microbiology, 4(1), 53-69. doi:10.1099/00221287-4-1-53 es_ES
dc.description.references Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1977). Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science & Technology, 11(7), 714-719. doi:10.1021/es60130a004 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem