Patashnick, H., & Rupprecht, E. G. (1991). Continuous PM-10 Measurements Using the Tapered Element Oscillating Microbalance. Journal of the Air & Waste Management Association, 41(8), 1079-1083. doi:10.1080/10473289.1991.10466903
Page, S. J., Tuchman, D. P., & Vinson, R. P. (2007). Thermally induced filter bias in TEOM mass measurement. Journal of Environmental Monitoring, 9(7), 760. doi:10.1039/b704424k
Charron, A. (2004). Quantitative interpretation of divergence between PM10 and PM2.5 mass measurement by TEOM and gravimetric (Partisol) instruments. Atmospheric Environment, 38(3), 415-423. doi:10.1016/j.atmosenv.2003.09.072
[+]
Patashnick, H., & Rupprecht, E. G. (1991). Continuous PM-10 Measurements Using the Tapered Element Oscillating Microbalance. Journal of the Air & Waste Management Association, 41(8), 1079-1083. doi:10.1080/10473289.1991.10466903
Page, S. J., Tuchman, D. P., & Vinson, R. P. (2007). Thermally induced filter bias in TEOM mass measurement. Journal of Environmental Monitoring, 9(7), 760. doi:10.1039/b704424k
Charron, A. (2004). Quantitative interpretation of divergence between PM10 and PM2.5 mass measurement by TEOM and gravimetric (Partisol) instruments. Atmospheric Environment, 38(3), 415-423. doi:10.1016/j.atmosenv.2003.09.072
Cyrys, J., Dietrich, G., Kreyling, W., Tuch, T., & Heinrich, J. (2001). PM2.5 measurements in ambient aerosol: comparison between Harvard impactor (HI) and the tapered element oscillating microbalance (TEOM) system. Science of The Total Environment, 278(1-3), 191-197. doi:10.1016/s0048-9697(01)00648-9
Jaques, P. A., Ambs, J. L., Grant, W. L., & Sioutas, C. (2004). Field Evaluation of the Differential TEOM Monitor for Continuous PM2.5Mass Concentrations Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 38(sup1), 49-59. doi:10.1080/02786820390229435
Green, D. C., Fuller, G. W., & Baker, T. (2009). Development and validation of the volatile correction model for PM10 – An empirical method for adjusting TEOM measurements for their loss of volatile particulate matter. Atmospheric Environment, 43(13), 2132-2141. doi:10.1016/j.atmosenv.2009.01.024
Eatough, D. J., Long, R. W., Modey, W. K., & Eatough, N. L. (2003). Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge. Atmospheric Environment, 37(9-10), 1277-1292. doi:10.1016/s1352-2310(02)01020-8
Hering, S., Fine, P. M., Sioutas, C., Jaques, P. A., Ambs, J. L., Hogrefe, O., & Demerjian, K. L. (2004). Field assessment of the dynamics of particulate nitrate vaporization using differential TEOM® and automated nitrate monitors. Atmospheric Environment, 38(31), 5183-5192. doi:10.1016/j.atmosenv.2004.02.066
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., … Wilson, J. (2005). Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 5(4), 1053-1123. doi:10.5194/acp-5-1053-2005
Long, R. W., Eatough, N. L., Mangelson, N. F., Thompson, W., Fiet, K., Smith, S., … Wilson, W. E. (2003). The measurement of PM2.5, including semi-volatile components, in the EMPACT program: results from the Salt Lake City Study. Atmospheric Environment, 37(31), 4407-4417. doi:10.1016/s1352-2310(03)00585-5
Grover, B. D., Eatough, N. L., Eatough, D. J., Chow, J. C., Watson, J. G., Ambs, J. L., … Wilson, W. E. (2006). Measurement of Both Nonvolatile and Semi-Volatile Fractions of Fine Particulate Matter in Fresno, CA. Aerosol Science and Technology, 40(10), 811-826. doi:10.1080/02786820600615071
Atkinson, R., & Arey, J. (2003). Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospheric Environment, 37, 197-219. doi:10.1016/s1352-2310(03)00391-1
Kroll, J. H., Chan, A. W. H., Ng, N. L., Flagan, R. C., & Seinfeld, J. H. (2007). Reactions of Semivolatile Organics and Their Effects on Secondary Organic Aerosol Formation. Environmental Science & Technology, 41(10), 3545-3550. doi:10.1021/es062059x
Svendby, T. M., Lazaridis, M., & Tørseth, K. (2008). Temperature dependent secondary organic aerosol formation from terpenes and aromatics. Journal of Atmospheric Chemistry, 59(1), 25-46. doi:10.1007/s10874-007-9093-7
Yu, J., Cocker III, D. R., Griffin, R. J., Flagan, R. C., & Seinfeld, J. H. (1999). Journal of Atmospheric Chemistry, 34(2), 207-258. doi:10.1023/a:1006254930583
Alfarra, M. R., Paulsen, D., Gysel, M., Garforth, A. A., Dommen, J., Prévôt, A. S. H., … Coe, H. (2006). A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber. Atmospheric Chemistry and Physics, 6(12), 5279-5293. doi:10.5194/acp-6-5279-2006
Iinuma, Y., Böge, O., Gnauk, T., & Herrmann, H. (2004). Aerosol-chamber study of the α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products. Atmospheric Environment, 38(5), 761-773. doi:10.1016/j.atmosenv.2003.10.015
Leungsakul, S., Jaoui, M., & Kamens, R. M. (2005). Kinetic Mechanism for Predicting Secondary Organic Aerosol Formation from the Reaction ofd-Limonene with Ozone. Environmental Science & Technology, 39(24), 9583-9594. doi:10.1021/es0492687
Ma, Y., Russell, A. T., & Marston, G. (2008). Mechanisms for the formation of secondary organic aerosol components from the gas-phase ozonolysis of α-pinene. Physical Chemistry Chemical Physics, 10(29), 4294. doi:10.1039/b803283a
Lee, S., & Kamens, R. M. (2005). Particle nucleation from the reaction of α-pinene and O3. Atmospheric Environment, 39(36), 6822-6832. doi:10.1016/j.atmosenv.2005.07.062
Capouet, M., & Müller, J.-F. (2006). A group contribution method for estimating the vapour pressures of α-pinene oxidation products. Atmospheric Chemistry and Physics, 6(6), 1455-1467. doi:10.5194/acp-6-1455-2006
Calogirou, A., Larsen, B. R., & Kotzias, D. (1999). Gas-phase terpene oxidation products: a review. Atmospheric Environment, 33(9), 1423-1439. doi:10.1016/s1352-2310(98)00277-5
Orzechowska, G. E., Nguyen, H. T., & Paulson, S. E. (2005). Photochemical Sources of Organic Acids. 2. Formation of C5−C9Carboxylic Acids from Alkene Ozonolysis under Dry and Humid Conditions. The Journal of Physical Chemistry A, 109(24), 5366-5375. doi:10.1021/jp050167k
Koch, S., Winterhalter, R., Uherek, E., Kolloff, A., Neeb, P., & Moortgat, G. K. (2000). Formation of new particles in the gas-phase ozonolysis of monoterpenes. Atmospheric Environment, 34(23), 4031-4042. doi:10.1016/s1352-2310(00)00133-3
Jaoui, M., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., & Edney, E. O. (2005). Identification and Quantification of Aerosol Polar Oxygenated Compounds Bearing Carboxylic or Hydroxyl Groups. 2. Organic Tracer Compounds from Monoterpenes. Environmental Science & Technology, 39(15), 5661-5673. doi:10.1021/es048111b
Claeys, M., Szmigielski, R., Kourtchev, I., Van der Veken, P., Vermeylen, R., Maenhaut, W., … Edney, E. O. (2007). Hydroxydicarboxylic Acids: Markers for Secondary Organic Aerosol from the Photooxidation of α-Pinene. Environmental Science & Technology, 41(5), 1628-1634. doi:10.1021/es0620181
Sciare, J., Sarda-Estève, R., Favez, O., Cachier, H., Aymoz, G., & Laj, P. (2008). Nighttime residential wood burning evidenced from an indirect method for estimating real-time concentration of particulate organic matter (POM). Atmospheric Environment, 42(9), 2158-2172. doi:10.1016/j.atmosenv.2007.11.053
Slowik, J. G., Stroud, C., Bottenheim, J. W., Brickell, P. C., Chang, R. Y.-W., Liggio, J., … Abbatt, J. P. D. (2010). Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests. Atmospheric Chemistry and Physics, 10(6), 2825-2845. doi:10.5194/acp-10-2825-2010
Kavouras, I. G., Mihalopoulos, N., & Stephanou, E. G. (1999). Secondary Organic Aerosol Formation vs Primary Organic Aerosol Emission: In Situ Evidence for the Chemical Coupling between Monoterpene Acidic Photooxidation Products and New Particle Formation over Forests. Environmental Science & Technology, 33(7), 1028-1037. doi:10.1021/es9807035
Plewka, A., Gnauk, T., Brüggemann, E., & Herrmann, H. (2006). Biogenic contributions to the chemical composition of airborne particles in a coniferous forest in Germany. Atmospheric Environment, 40, 103-115. doi:10.1016/j.atmosenv.2005.09.090
[-]