- -

Temperature effect of tapered element oscillating microbalance (TEOM) system measuring semi-volatile organic particulate matter

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Temperature effect of tapered element oscillating microbalance (TEOM) system measuring semi-volatile organic particulate matter

Show full item record

Tortajada Genaro, LA.; Borrás García, EM. (2011). Temperature effect of tapered element oscillating microbalance (TEOM) system measuring semi-volatile organic particulate matter. Journal of Environmental Monitoring. 13:1017-1026. doi:10.1039/c0em00451k

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28647

Files in this item

Item Metadata

Title: Temperature effect of tapered element oscillating microbalance (TEOM) system measuring semi-volatile organic particulate matter
Author: Tortajada Genaro, Luis Antonio Borrás García, Esther Mª
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
The tapered element oscillating microbalance (TEOM) system is widely used to measure continuous particle mass concentrations in air quality networks. However, the semi-volatile aerosol material is lost under normal operation ...[+]
Subjects: Beta pinene , Limonene , Organic compound , Pinene , Air quality , Article , Controlled study , Gas chromatography , Mass spectrometry , Ozonolysis , Priority journal , Secondary organic aerosol , Temperature sensitivity , Aerosols , Environmental Monitoring , Reproducibility of Results , Temperature , Thermogravimetry , Volatile Organic Compounds
Copyrigths: Cerrado
Source:
Journal of Environmental Monitoring. (issn: 1464-0325 )
DOI: 10.1039/c0em00451k
Publisher:
Royal Society of Chemistry
Publisher version: http://pubs.rsc.org/en/content/articlepdf/2011/em/c0em00451k
Project ID:
info:eu-repo/grantAgreement/MEC//CSD2007-00067/ES/MULTIDISCIPLINARY RESEARCH CONSORTIUM ON GRADUAL AND ABRUPT CLIMATE CHANGES, AND THEIR IMPACTS ON THE ENVIRONMENT (GRACCIE)/ /
Thanks:
We gratefully acknowledge the Generalitat Valenciana, the GRACCIE CBS2007-00067 project in the CONSOLIDER-INGENIO 2010 program and Bancaixa for supporting this study.
Type: Artículo

References

Patashnick, H., & Rupprecht, E. G. (1991). Continuous PM-10 Measurements Using the Tapered Element Oscillating Microbalance. Journal of the Air & Waste Management Association, 41(8), 1079-1083. doi:10.1080/10473289.1991.10466903

Page, S. J., Tuchman, D. P., & Vinson, R. P. (2007). Thermally induced filter bias in TEOM mass measurement. Journal of Environmental Monitoring, 9(7), 760. doi:10.1039/b704424k

Charron, A. (2004). Quantitative interpretation of divergence between PM10 and PM2.5 mass measurement by TEOM and gravimetric (Partisol) instruments. Atmospheric Environment, 38(3), 415-423. doi:10.1016/j.atmosenv.2003.09.072 [+]
Patashnick, H., & Rupprecht, E. G. (1991). Continuous PM-10 Measurements Using the Tapered Element Oscillating Microbalance. Journal of the Air & Waste Management Association, 41(8), 1079-1083. doi:10.1080/10473289.1991.10466903

Page, S. J., Tuchman, D. P., & Vinson, R. P. (2007). Thermally induced filter bias in TEOM mass measurement. Journal of Environmental Monitoring, 9(7), 760. doi:10.1039/b704424k

Charron, A. (2004). Quantitative interpretation of divergence between PM10 and PM2.5 mass measurement by TEOM and gravimetric (Partisol) instruments. Atmospheric Environment, 38(3), 415-423. doi:10.1016/j.atmosenv.2003.09.072

Cyrys, J., Dietrich, G., Kreyling, W., Tuch, T., & Heinrich, J. (2001). PM2.5 measurements in ambient aerosol: comparison between Harvard impactor (HI) and the tapered element oscillating microbalance (TEOM) system. Science of The Total Environment, 278(1-3), 191-197. doi:10.1016/s0048-9697(01)00648-9

Jaques, P. A., Ambs, J. L., Grant, W. L., & Sioutas, C. (2004). Field Evaluation of the Differential TEOM Monitor for Continuous PM2.5Mass Concentrations Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 38(sup1), 49-59. doi:10.1080/02786820390229435

Green, D. C., Fuller, G. W., & Baker, T. (2009). Development and validation of the volatile correction model for PM10 – An empirical method for adjusting TEOM measurements for their loss of volatile particulate matter. Atmospheric Environment, 43(13), 2132-2141. doi:10.1016/j.atmosenv.2009.01.024

Eatough, D. J., Long, R. W., Modey, W. K., & Eatough, N. L. (2003). Semi-volatile secondary organic aerosol in urban atmospheres: meeting a measurement challenge. Atmospheric Environment, 37(9-10), 1277-1292. doi:10.1016/s1352-2310(02)01020-8

Hering, S., Fine, P. M., Sioutas, C., Jaques, P. A., Ambs, J. L., Hogrefe, O., & Demerjian, K. L. (2004). Field assessment of the dynamics of particulate nitrate vaporization using differential TEOM® and automated nitrate monitors. Atmospheric Environment, 38(31), 5183-5192. doi:10.1016/j.atmosenv.2004.02.066

Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., … Wilson, J. (2005). Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 5(4), 1053-1123. doi:10.5194/acp-5-1053-2005

Long, R. W., Eatough, N. L., Mangelson, N. F., Thompson, W., Fiet, K., Smith, S., … Wilson, W. E. (2003). The measurement of PM2.5, including semi-volatile components, in the EMPACT program: results from the Salt Lake City Study. Atmospheric Environment, 37(31), 4407-4417. doi:10.1016/s1352-2310(03)00585-5

Grover, B. D., Eatough, N. L., Eatough, D. J., Chow, J. C., Watson, J. G., Ambs, J. L., … Wilson, W. E. (2006). Measurement of Both Nonvolatile and Semi-Volatile Fractions of Fine Particulate Matter in Fresno, CA. Aerosol Science and Technology, 40(10), 811-826. doi:10.1080/02786820600615071

Atkinson, R., & Arey, J. (2003). Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmospheric Environment, 37, 197-219. doi:10.1016/s1352-2310(03)00391-1

Kroll, J. H., Chan, A. W. H., Ng, N. L., Flagan, R. C., & Seinfeld, J. H. (2007). Reactions of Semivolatile Organics and Their Effects on Secondary Organic Aerosol Formation. Environmental Science & Technology, 41(10), 3545-3550. doi:10.1021/es062059x

Svendby, T. M., Lazaridis, M., & Tørseth, K. (2008). Temperature dependent secondary organic aerosol formation from terpenes and aromatics. Journal of Atmospheric Chemistry, 59(1), 25-46. doi:10.1007/s10874-007-9093-7

Yu, J., Cocker III, D. R., Griffin, R. J., Flagan, R. C., & Seinfeld, J. H. (1999). Journal of Atmospheric Chemistry, 34(2), 207-258. doi:10.1023/a:1006254930583

Alfarra, M. R., Paulsen, D., Gysel, M., Garforth, A. A., Dommen, J., Prévôt, A. S. H., … Coe, H. (2006). A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber. Atmospheric Chemistry and Physics, 6(12), 5279-5293. doi:10.5194/acp-6-5279-2006

Iinuma, Y., Böge, O., Gnauk, T., & Herrmann, H. (2004). Aerosol-chamber study of the α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products. Atmospheric Environment, 38(5), 761-773. doi:10.1016/j.atmosenv.2003.10.015

Leungsakul, S., Jaoui, M., & Kamens, R. M. (2005). Kinetic Mechanism for Predicting Secondary Organic Aerosol Formation from the Reaction ofd-Limonene with Ozone. Environmental Science & Technology, 39(24), 9583-9594. doi:10.1021/es0492687

Ma, Y., Russell, A. T., & Marston, G. (2008). Mechanisms for the formation of secondary organic aerosol components from the gas-phase ozonolysis of α-pinene. Physical Chemistry Chemical Physics, 10(29), 4294. doi:10.1039/b803283a

Lee, S., & Kamens, R. M. (2005). Particle nucleation from the reaction of α-pinene and O3. Atmospheric Environment, 39(36), 6822-6832. doi:10.1016/j.atmosenv.2005.07.062

Capouet, M., & Müller, J.-F. (2006). A group contribution method for estimating the vapour pressures of α-pinene oxidation products. Atmospheric Chemistry and Physics, 6(6), 1455-1467. doi:10.5194/acp-6-1455-2006

Calogirou, A., Larsen, B. R., & Kotzias, D. (1999). Gas-phase terpene oxidation products: a review. Atmospheric Environment, 33(9), 1423-1439. doi:10.1016/s1352-2310(98)00277-5

Orzechowska, G. E., Nguyen, H. T., & Paulson, S. E. (2005). Photochemical Sources of Organic Acids. 2. Formation of C5−C9Carboxylic Acids from Alkene Ozonolysis under Dry and Humid Conditions. The Journal of Physical Chemistry A, 109(24), 5366-5375. doi:10.1021/jp050167k

Koch, S., Winterhalter, R., Uherek, E., Kolloff, A., Neeb, P., & Moortgat, G. K. (2000). Formation of new particles in the gas-phase ozonolysis of monoterpenes. Atmospheric Environment, 34(23), 4031-4042. doi:10.1016/s1352-2310(00)00133-3

Jaoui, M., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., & Edney, E. O. (2005). Identification and Quantification of Aerosol Polar Oxygenated Compounds Bearing Carboxylic or Hydroxyl Groups. 2. Organic Tracer Compounds from Monoterpenes. Environmental Science & Technology, 39(15), 5661-5673. doi:10.1021/es048111b

Claeys, M., Szmigielski, R., Kourtchev, I., Van der Veken, P., Vermeylen, R., Maenhaut, W., … Edney, E. O. (2007). Hydroxydicarboxylic Acids:  Markers for Secondary Organic Aerosol from the Photooxidation of α-Pinene. Environmental Science & Technology, 41(5), 1628-1634. doi:10.1021/es0620181

Sciare, J., Sarda-Estève, R., Favez, O., Cachier, H., Aymoz, G., & Laj, P. (2008). Nighttime residential wood burning evidenced from an indirect method for estimating real-time concentration of particulate organic matter (POM). Atmospheric Environment, 42(9), 2158-2172. doi:10.1016/j.atmosenv.2007.11.053

Slowik, J. G., Stroud, C., Bottenheim, J. W., Brickell, P. C., Chang, R. Y.-W., Liggio, J., … Abbatt, J. P. D. (2010). Characterization of a large biogenic secondary organic aerosol event from eastern Canadian forests. Atmospheric Chemistry and Physics, 10(6), 2825-2845. doi:10.5194/acp-10-2825-2010

Kavouras, I. G., Mihalopoulos, N., & Stephanou, E. G. (1999). Secondary Organic Aerosol Formation vs Primary Organic Aerosol Emission:  In Situ Evidence for the Chemical Coupling between Monoterpene Acidic Photooxidation Products and New Particle Formation over Forests. Environmental Science & Technology, 33(7), 1028-1037. doi:10.1021/es9807035

Plewka, A., Gnauk, T., Brüggemann, E., & Herrmann, H. (2006). Biogenic contributions to the chemical composition of airborne particles in a coniferous forest in Germany. Atmospheric Environment, 40, 103-115. doi:10.1016/j.atmosenv.2005.09.090

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record