Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez Peñarroja, Jordi | es_ES |
dc.contributor.author | Benet Gilabert, Ginés | es_ES |
dc.contributor.author | Simó Ten, José Enrique | es_ES |
dc.date.accessioned | 2013-05-14T09:23:12Z | |
dc.date.available | 2013-05-14T09:23:12Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | http://hdl.handle.net/10251/28817 | |
dc.description.abstract | This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%. © 2012 by the authors; licensee MDPI, Basel, Switzerland. | es_ES |
dc.description.sponsorship | This work has been partially supported by SENSE project (Specific Targeted Research Project within the thematic priority IST 2.5.3 of the 6th Framework Program of the European Commission: IST Project 033279), and has been also co-funded by the Spanish research projects SIDIRELI: DPI2008-06737-C02-01/02 and COBAMI: DPI2011-28507-C02-02, both partially supported with European FEDER funds. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Computer vision | es_ES |
dc.subject | Distributed smart cameras | es_ES |
dc.subject | Domain-specific architectures | es_ES |
dc.subject | Image processing | es_ES |
dc.subject | Real-time systems | es_ES |
dc.subject | Surveillance systems | es_ES |
dc.subject | Article | es_ES |
dc.subject | Artificial intelligence | es_ES |
dc.subject | Automated pattern recognition | es_ES |
dc.subject | Computer assisted diagnosis | es_ES |
dc.subject | Computer network | es_ES |
dc.subject | Computer program | es_ES |
dc.subject | Equipment | es_ES |
dc.subject | Equipment design | es_ES |
dc.subject | Instrumentation | es_ES |
dc.subject | Methodology | es_ES |
dc.subject | Organization and management | es_ES |
dc.subject | Photography | es_ES |
dc.subject | Transducer | es_ES |
dc.subject | Videorecording | es_ES |
dc.subject | Computer Communication Networks | es_ES |
dc.subject | Equipment Failure Analysis | es_ES |
dc.subject | Image Interpretation, Computer-Assisted | es_ES |
dc.subject | Pattern Recognition, Automated | es_ES |
dc.subject | Security Measures | es_ES |
dc.subject | Software | es_ES |
dc.subject | Transducers | es_ES |
dc.subject | Video Recording | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Video Sensor Architecture for Surveillance Applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s120201509 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/033279/EU/Smart Embedded Network of Sensing Entities/SENSE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2008-06737-C02-01/ES/NUCLEO DE CONTROL EN SISTEMAS DISTRIBUIDOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-28507-C02-02/ES/SOPORTE DE EJECUCION FIABLE DE SISTEMAS DE CONTROL BASADOS EN MISIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Sánchez Peñarroja, J.; Benet Gilabert, G.; Simó Ten, JE. (2012). Video Sensor Architecture for Surveillance Applications. Sensors. 12(2):1509-1528. https://doi.org/10.3390/s120201509 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/s120201509 | es_ES |
dc.description.upvformatpinicio | 1509 | es_ES |
dc.description.upvformatpfin | 1528 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 211498 | |
dc.identifier.pmid | 22438723 | en_EN |
dc.identifier.pmcid | PMC3304125 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Batlle, J. (2002). A New FPGA/DSP-Based Parallel Architecture for Real-Time Image Processing. Real-Time Imaging, 8(5), 345-356. doi:10.1006/rtim.2001.0273 | es_ES |
dc.description.references | Foresti, G. L., Micheloni, C., Piciarelli, C., & Snidaro, L. (2009). Visual Sensor Technology for Advanced Surveillance Systems: Historical View, Technological Aspects and Research Activities in Italy. Sensors, 9(4), 2252-2270. doi:10.3390/s90402252 | es_ES |
dc.description.references | Bramberger, M., Doblander, A., Maier, A., Rinner, B., & Schwabach, H. (2006). Distributed Embedded Smart Cameras for Surveillance Applications. Computer, 39(2), 68-75. doi:10.1109/mc.2006.55 | es_ES |
dc.description.references | Foresti, G. L., Micheloni, C., Snidaro, L., Remagnino, P., & Ellis, T. (2005). Active video-based surveillance system: the low-level image and video processing techniques needed for implementation. IEEE Signal Processing Magazine, 22(2), 25-37. doi:10.1109/msp.2005.1406473 | es_ES |
dc.description.references | Fuentes, L. M., & Velastin, S. A. (2003). Tracking People for Automatic Surveillance Applications. Lecture Notes in Computer Science, 238-245. doi:10.1007/978-3-540-44871-6_28 | es_ES |
dc.description.references | García, J., Pérez, O., Berlanga, A., & Molina, J. M. (2007). Video tracking system optimization using evolution strategies. International Journal of Imaging Systems and Technology, 17(2), 75-90. doi:10.1002/ima.20100 | es_ES |
dc.description.references | Xu, H., Lv, J., Chen, X., Gong, X., & Yang, C. (2007). Design of video processing and testing system based on DSP and FPGA. 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment. doi:10.1117/12.783790 | es_ES |
dc.description.references | Sanfeliu, A., Andrade-Cetto, J., Barbosa, M., Bowden, R., Capitán, J., Corominas, A., … Spaan, M. T. J. (2010). Decentralized Sensor Fusion for Ubiquitous Networking Robotics in Urban Areas. Sensors, 10(3), 2274-2314. doi:10.3390/s100302274 | es_ES |
dc.description.references | http://www.sense-ist.org | es_ES |