- -

Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium

Mostrar el registro completo del ítem

Primo Arnau, AM.; Rajabi, F.; Karimi, N.; Saidi, MR.; Varma, RS.; Luque, R. (2012). Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium. Advanced Synthesis and Catalysis. 354(9):1707-1711. https://doi.org/10.1002/adsc.201100630

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/30020

Ficheros en el ítem

Metadatos del ítem

Título: Unprecedented selective oxidation of styrene derivatives using a supported iron oxide nanocatalyst in aqueous medium
Autor: Primo Arnau, Ana María Rajabi, Fatemeh Karimi, Nafiseh Saidi, Mohammad Reza Varma, Rajender S. Luque, Rafael
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Iron oxide nanoparticles supported on mesoporous silica-type materials have been successfully utilized in the aqueous selective oxidation of alkenes under mild conditions using hydrogen peroxide as green oxidant. The ...[+]
Palabras clave: Aqueous phase chemistry , Alkene oxidation , Heterogeneous catalysis , Supported iron oxide nanoparticles
Derechos de uso: Cerrado
Fuente:
Advanced Synthesis and Catalysis. (issn: 1615-4150 )
DOI: 10.1002/adsc.201100630
Editorial:
Wiley-VCH Verlag
Versión del editor: http://onlinelibrary.wiley.com/doi/10.1002/adsc.201100630/pdf
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//RYC-2009-04199/ES/RYC-2009-04199/
info:eu-repo/grantAgreement/MICINN//CTQ2011-28954-C02-02/ES/TDISEÑO DE NANOMATERIALES CATALITICOS PARA LA PRODUCCION DE COMPUESTOS QUIMICOS DE ALTO VALOR AÑADIDO Y BIOCOMBUSTIBLES A PARTIR DE VALORIZACION DE BIOMASA/
info:eu-repo/grantAgreement/Junta de Andalucía//P10-FQM-6711/
Agradecimientos:
FR is grateful to Payame Noor University and Iran National Science Foundation (INSF) for support of this work. RL gratefully acknowledges support from Ministerio de Ciencia e Innovacion, Gobierno de Espana through a Ramon ...[+]
Tipo: Artículo

References

Okuhara, T. (2002). Water-Tolerant Solid Acid Catalysts. Chemical Reviews, 102(10), 3641-3666. doi:10.1021/cr0103569

Polshettiwar, V., & Varma, R. S. (2010). Green chemistry by nano-catalysis. Green Chemistry, 12(5), 743. doi:10.1039/b921171c

Polshettiwar, V., & Varma, R. S. (2008). Microwave-Assisted Organic Synthesis and Transformations using Benign Reaction Media. Accounts of Chemical Research, 41(5), 629-639. doi:10.1021/ar700238s [+]
Okuhara, T. (2002). Water-Tolerant Solid Acid Catalysts. Chemical Reviews, 102(10), 3641-3666. doi:10.1021/cr0103569

Polshettiwar, V., & Varma, R. S. (2010). Green chemistry by nano-catalysis. Green Chemistry, 12(5), 743. doi:10.1039/b921171c

Polshettiwar, V., & Varma, R. S. (2008). Microwave-Assisted Organic Synthesis and Transformations using Benign Reaction Media. Accounts of Chemical Research, 41(5), 629-639. doi:10.1021/ar700238s

Serrano-Ruiz, J. C., Luque, R., & Sepúlveda-Escribano, A. (2011). Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chemical Society Reviews, 40(11), 5266. doi:10.1039/c1cs15131b

Weingarten, R., Tompsett, G. A., Conner, W. C., & Huber, G. W. (2011). Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: The role of Lewis and Brønsted acid sites. Journal of Catalysis, 279(1), 174-182. doi:10.1016/j.jcat.2011.01.013

Butler, R. N., & Coyne, A. G. (2010). Water: Nature’s Reaction Enforcer—Comparative Effects for Organic Synthesis «In-Water» and «On-Water». Chemical Reviews, 110(10), 6302-6337. doi:10.1021/cr100162c

Li, C.-J., & Chen, L. (2006). Organic chemistry in water. Chem. Soc. Rev., 35(1), 68-82. doi:10.1039/b507207g

Gonzalez-Arellano, C., Luque, R., & Macquarrie, D. J. (2009). Microwave efficient S-arylation of thiols with aryl iodides using supported metal nanoparticles. Chemical Communications, (11), 1410. doi:10.1039/b818767c

González-Arellano, C., Campelo, J. M., Macquarrie, D. J., Marinas, J. M., Romero, A. A., & Luque, R. (2008). Efficient Microwave Oxidation of Alcohols Using Low-Loaded Supported Metallic Iron Nanoparticles. ChemSusChem, 1(8-9), 746-750. doi:10.1002/cssc.200800113

Pineda, A., Balu, A. M., Campelo, J. M., Romero, A. A., Carmona, D., Balas, F., … Luque, R. (2011). A Dry Milling Approach for the Synthesis of Highly Active Nanoparticles Supported on Porous Materials. ChemSusChem, 4(11), 1561-1565. doi:10.1002/cssc.201100265

Rajabi, F., Naserian, S., Primo, A., & Luque, R. (2011). Efficient and Highly Selective Aqueous Oxidation of Sulfides to Sulfoxides at Room Temperature Catalysed by Supported Iron Oxide Nanoparticles on SBA-15. Advanced Synthesis & Catalysis, 353(11-12), 2060-2066. doi:10.1002/adsc.201100149

Luque, R., Clark, J. H., Yoshida, K., & Gai, P. L. (2009). Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons®. Chemical Communications, (35), 5305. doi:10.1039/b911877b

Vargas, C., Mariana Balu, A., Manuel Campelo, J., Gonzalez-Arellano, C., Luque, R., & Angel Romero, A. (2010). Towards Greener and More Efficient C-C and C-Heteroatom Couplings: Present and Future. Current Organic Synthesis, 7(6), 568-586. doi:10.2174/157017910794328547

Balu, A. M., Campelo, J. M., Luque, R., & Romero, A. A. (2010). One-step microwave-assisted asymmetric cyclisation/hydrogenation of citronellal to menthols using supported nanoparticles on mesoporous materials. Organic & Biomolecular Chemistry, 8(12), 2845. doi:10.1039/c003600e

Shipley, H. J., Engates, K. E., & Guettner, A. M. (2010). Study of iron oxide nanoparticles in soil for remediation of arsenic. Journal of Nanoparticle Research, 13(6), 2387-2397. doi:10.1007/s11051-010-9999-x

Tong, M., Yuan, S., Long, H., Zheng, M., Wang, L., & Chen, J. (2011). Reduction of nitrobenzene in groundwater by iron nanoparticles immobilized in PEG/nylon membrane. Journal of Contaminant Hydrology, 122(1-4), 16-25. doi:10.1016/j.jconhyd.2010.10.003

Miguel-Sancho, N., Bomatí-Miguel, O., Colom, G., Salvador, J.-P., Marco, M.-P., & Santamaría, J. (2011). Development of Stable, Water-Dispersible, and Biofunctionalizable Superparamagnetic Iron Oxide Nanoparticles. Chemistry of Materials, 23(11), 2795-2802. doi:10.1021/cm1036452

Hoare, T., Timko, B. P., Santamaria, J., Goya, G. F., Irusta, S., Lau, S., … Kohane, D. S. (2011). Magnetically Triggered Nanocomposite Membranes: A Versatile Platform for Triggered Drug Release. Nano Letters, 11(3), 1395-1400. doi:10.1021/nl200494t

Zeng, T., Chen, W.-W., Cirtiu, C. M., Moores, A., Song, G., & Li, C.-J. (2010). Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chemistry, 12(4), 570. doi:10.1039/b920000b

Sasidharan, M., & Bhaumik, A. (2010). Regioselective epoxidation of different types of double bonds over large-pore titanium silicate Ti-β. Journal of Molecular Catalysis A: Chemical, 328(1-2), 60-67. doi:10.1016/j.molcata.2010.05.024

Guidotti, M., Pirovano, C., Ravasio, N., Lázaro, B., Fraile, J. M., Mayoral, J. A., … Galarneau, A. (2009). The use of H2O2 over titanium-grafted mesoporous silica catalysts: a step further towards sustainable epoxidation. Green Chemistry, 11(9), 1421. doi:10.1039/b903302e

Maiti, S. K., Malik, K. M. A., Gupta, S., Chakraborty, S., Ganguli, A. K., Mukherjee, A. K., & Bhattacharyya, R. (2006). Oxo- and Oxoperoxo-molybdenum(VI) Complexes with Aryl Hydroxamates:  Synthesis, Structure, and Catalytic Uses in Highly Efficient, Selective, and Ecologically Benign Peroxidic Epoxidation of Olefins. Inorganic Chemistry, 45(24), 9843-9857. doi:10.1021/ic0607235

Nlate, S., Plault, L., & Astruc, D. (2006). Synthesis of 9- and 27-Armed Tetrakis(diperoxotungsto)phosphate-Cored Dendrimers and Their Use as Recoverable and Reusable Catalysts in the Oxidation of Alkenes, Sulfides, and Alcohols with Hydrogen Peroxide. Chemistry - A European Journal, 12(3), 903-914. doi:10.1002/chem.200500556

Van Vliet, M. C. A., Mandelli, D., Arends, I. W. C. E., Schuchardt, U., & Sheldon, R. A. (2001). Alumina: a cheap, active and selective catalyst for epoxidations with (aqueous) hydrogen peroxide. Green Chemistry, 3(5), 243-246. doi:10.1039/b103952k

Wang, X., Lin, K. S. K., Chan, J. C. C., & Cheng, S. (2005). Direct Synthesis and Catalytic Applications of Ordered Large Pore Aminopropyl-Functionalized SBA-15 Mesoporous Materials. The Journal of Physical Chemistry B, 109(5), 1763-1769. doi:10.1021/jp045798d

Shi, F., Tse, M. K., Pohl, M.-M., Brückner, A., Zhang, S., & Beller, M. (2007). Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis: Improved Activity and Selectivity of Free Nano-Fe2O3 in Selective Oxidations. Angewandte Chemie, 119(46), 9022-9024. doi:10.1002/ange.200703418

Shi, F., Tse, M. K., Pohl, M.-M., Brückner, A., Zhang, S., & Beller, M. (2007). Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis: Improved Activity and Selectivity of Free Nano-Fe2O3 in Selective Oxidations. Angewandte Chemie International Edition, 46(46), 8866-8868. doi:10.1002/anie.200703418

Anand, N., Reddy, K. H. P., Swapna, V., Rao, K. S. R., & Burri, D. R. (2011). Fe(III) complex anchored SBA-15 is a new heterogeneous catalyst for the cleavage of aliphatic CC bond of styrene and its derivatives. Microporous and Mesoporous Materials, 143(1), 132-140. doi:10.1016/j.micromeso.2011.02.017

Liu, B., Chen, Y., Yu, C.-Z., & Shen, Z.-W. (2010). Highly Chemical and Regio-selective Catalytic Oxidation with a Novel Manganese Catalyst. Chinese Journal of Chemistry, 21(7), 833-838. doi:10.1002/cjoc.20030210723

Bhyrappa, P., Young, J. K., Moore, J. S., & Suslick, K. S. (1996). Shape selective epoxidation of alkenes by metalloporphyrin-dendrimers. Journal of Molecular Catalysis A: Chemical, 113(1-2), 109-116. doi:10.1016/s1381-1169(96)00161-6

Deguillaume, L., Leriche, M., & Chaumerliac, N. (2005). Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds. Chemosphere, 60(5), 718-724. doi:10.1016/j.chemosphere.2005.03.052

Hulea, V., & Dumitriu, E. (2004). Styrene oxidation with H2O2 over Ti-containing molecular sieves with MFI, BEA and MCM-41 topologies. Applied Catalysis A: General, 277(1-2), 99-106. doi:10.1016/j.apcata.2004.09.001

Wang, Y., Zhang, Q., Shishido, T., & Takehira, K. (2002). Characterizations of Iron-Containing MCM-41 and Its Catalytic Properties in Epoxidation of Styrene with Hydrogen Peroxide. Journal of Catalysis, 209(1), 186-196. doi:10.1006/jcat.2002.3607

Maurya, M. R., Chandrakar, A. K., & Chand, S. (2007). Oxidation of phenol, styrene and methyl phenyl sulfide with H2O2 catalysed by dioxovanadium(V) and copper(II) complexes of 2-aminomethylbenzimidazole-based ligand encapsulated in zeolite-Y. Journal of Molecular Catalysis A: Chemical, 263(1-2), 227-237. doi:10.1016/j.molcata.2006.08.084

Tanglumlert, W., Imae, T., White, T. J., & Wongkasemjit, S. (2009). Styrene oxidation with H2O2 over Fe- and Ti-SBA-1 mesoporous silica. Catalysis Communications, 10(7), 1070-1073. doi:10.1016/j.catcom.2009.01.002

Yang, Y., Zhang, Y., Hao, S., Guan, J., Ding, H., Shang, F., … Kan, Q. (2010). Heterogenization of functionalized Cu(II) and VO(IV) Schiff base complexes by direct immobilization onto amino-modified SBA-15: Styrene oxidation catalysts with enhanced reactivity. Applied Catalysis A: General, 381(1-2), 274-281. doi:10.1016/j.apcata.2010.04.018

Campelo, J. M., Conesa, T. D., Gracia, M. J., Jurado, M. J., Luque, R., Marinas, J. M., & Romero, A. A. (2008). Microwave facile preparation of highly active and dispersed SBA-12 supported metal nanoparticles. Green Chemistry, 10(8), 853. doi:10.1039/b801754a

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem