Jiménez Fernández, E.; Juan Blanco, MA.; Sánchez Pérez, EA. (2011). A Komlós Theorem for abstract Banach latticesof measurable functions. Journal of Mathematical Analysis and Applications. (383):130-136. https://doi.org/10.1016/j.jmaa.2011.05.010
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31401
Title:
|
A Komlós Theorem for abstract Banach latticesof measurable functions
|
Author:
|
Jiménez Fernández, Eduardo
Juan Blanco, María Aránzazu
Sánchez Pérez, Enrique Alfonso
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Issued date:
|
|
Abstract:
|
Consider a Banach function space X(mu) of (classes of) locally integrable functions over a sigma-finite measure space (Omega, Sigma, mu) with the weak sigma-Fatou property. Day and Lennard (2010) [9] proved that the theorem ...[+]
Consider a Banach function space X(mu) of (classes of) locally integrable functions over a sigma-finite measure space (Omega, Sigma, mu) with the weak sigma-Fatou property. Day and Lennard (2010) [9] proved that the theorem of Komlos on convergence of Cesaro sums in L(1) [0, 1] holds also in these spaces; i.e. for every bounded sequence (f(n))(n) in X(mu), there exists a subsequence (f(nk))(k) and a function f is an element of X(mu) such that for any further subsequence (h(j))(j) of (f(nk))(k), the series 1/n Sigma(n)(j=1) h(j) converges mu-a.e. to f. In this paper we generalize this result to a more general class of Banach spaces of classes of measurable functions - spaces L(1) (nu) of integrable functions with respect to a vector measure nu on a delta-ring - and explore to which point the Fatou property and the Komlos property are equivalent. In particular we prove that this always holds for ideals of spaces L(1)(nu) with the weak sigma-Fatou property, and provide an example of a Banach lattice of measurable functions that is Fatou but do not satisfy the Komlos Theorem. (C) 2011 Elsevier Inc.
[-]
|
Subjects:
|
Komlos Theorem
,
Cesaro convergence
,
Fatou property
,
Banach function space
,
Vector measure
|
Copyrigths:
|
Cerrado |
Source:
|
Journal of Mathematical Analysis and Applications. (issn:
0022-247X
)
|
DOI:
|
10.1016/j.jmaa.2011.05.010
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://dx.doi.org/10.1016/j.jmaa.2011.05.010
|
Project ID:
|
info:eu-repo/grantAgreement/MICINN//MTM2008-04594/ES/ANALISIS DE FOURIER CLASICO, MULTILINEAL Y VECTORIAL/
info:eu-repo/grantAgreement/GVA//GV%2F2009%2F102/ES/Espacios de funciones e integracion en espacios de banach/
info:eu-repo/grantAgreement/UPV//PAID-06-08-3093/
info:eu-repo/grantAgreement/MICINN//MTM2009-14483-C02-02/ES/Integracion Bilineal, Medidas Vectoriales Y Espacios De Funciones De Banach/
|
Thanks:
|
MA. Juan acknowledges the support of the Ministerio de Ciencia e Innovacion (Spain) under the research project MTM2008-04594: Generalitat Valenciana (2009/102) and UPV (PAID-06-08 Ref. 3093).
|
Type:
|
Artículo
|