- -

Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs

Show simple item record

Files in this item

dc.contributor.author Sánchez Tovar, Rita es_ES
dc.contributor.author Paramasivam, I. es_ES
dc.contributor.author Lee, K. es_ES
dc.contributor.author Schmuki, P. es_ES
dc.date.accessioned 2013-09-04T08:29:37Z
dc.date.available 2013-09-04T08:29:37Z
dc.date.issued 2012
dc.identifier.issn 0959-9428
dc.identifier.uri http://hdl.handle.net/10251/31739
dc.description.abstract [EN] In the present work we grow anodic TiO2 nanotube layers under defined hydrodynamic conditions using a rotating Ti anode. We show that hydrodynamic control can be beneficially used to achieve two main effects. First, under conditions where tube growth is controlled by diffusion (for low concentration of fluoride ions in the electrolyte), growth can significantly be accelerated (or even be enabled) by increasing flow rates in the electrolyte. Second, ill-defined nanotube top morphologies can be avoided ¿ this is particularly important in view of designing optimum tube geometries for the use of TiO2 nanotube layers in photoelectrochemical applications such as DSSCs. es_ES
dc.description.sponsorship The authors would like to express their gratitude to the Spanish Ministry of Science and Innovation FPU grant given to Rita Sanchez Tovar, and DFG, and Engineering of Advanced Materials (EAM), Cluster of Excellence at the University of Erlangen-Nurnberg, Germany for the financial support of Mrs I. Paramasivam.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Journal of Materials Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Sensitized Solar-Cells es_ES
dc.subject Oxide Nanotubes es_ES
dc.subject Titanium es_ES
dc.subject Electrolytes es_ES
dc.subject Efficiency es_ES
dc.subject Films es_ES
dc.subject Arrays es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C2JM31246H
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Sánchez Tovar, R.; Paramasivam, I.; Lee, K.; Schmuki, P. (2012). Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs. Journal of Materials Chemistry. 22(25):12792-12795. doi:10.1039/C2JM31246H es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/C2JM31246H es_ES
dc.description.upvformatpinicio 12792 es_ES
dc.description.upvformatpfin 12795 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 25 es_ES
dc.relation.senia 234113
dc.contributor.funder Friedrich-Alexander-Universität Erlangen-Nürnberg
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references FUJISHIMA, A., & HONDA, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0 es_ES
dc.description.references Macak, J. M., Zlamal, M., Krysa, J., & Schmuki, P. (2007). Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small, 3(2), 300-304. doi:10.1002/smll.200600426 es_ES
dc.description.references OH, S., FINONES, R., DARAIO, C., CHEN, L., & JIN, S. (2005). Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials, 26(24), 4938-4943. doi:10.1016/j.biomaterials.2005.01.048 es_ES
dc.description.references Park, J., Bauer, S., von der Mark, K., & Schmuki, P. (2007). Nanosize and Vitality:  TiO2Nanotube Diameter Directs Cell Fate. Nano Letters, 7(6), 1686-1691. doi:10.1021/nl070678d es_ES
dc.description.references O’Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740. doi:10.1038/353737a0 es_ES
dc.description.references Macák, J. M., Tsuchiya, H., Ghicov, A., & Schmuki, P. (2005). Dye-sensitized anodic TiO2 nanotubes. Electrochemistry Communications, 7(11), 1133-1137. doi:10.1016/j.elecom.2005.08.013 es_ES
dc.description.references Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of Titanium Oxide Nanotube. Langmuir, 14(12), 3160-3163. doi:10.1021/la9713816 es_ES
dc.description.references Jung, J. H., Kobayashi, H., van Bommel, K. J. C., Shinkai, S., & Shimizu, T. (2002). Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2Structures Using an Organogel Template. Chemistry of Materials, 14(4), 1445-1447. doi:10.1021/cm011625e es_ES
dc.description.references Imai, H., Takei, Y., Shimizu, K., Matsuda, M., & Hirashima, H. (1999). Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. Journal of Materials Chemistry, 9(12), 2971-2972. doi:10.1039/a906005g es_ES
dc.description.references Bavykin, D. V., Friedrich, J. M., & Walsh, F. C. (2006). Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Advanced Materials, 18(21), 2807-2824. doi:10.1002/adma.200502696 es_ES
dc.description.references Bavykin, D. V., Parmon, V. N., Lapkin, A. A., & Walsh, F. C. (2004). The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 14(22), 3370. doi:10.1039/b406378c es_ES
dc.description.references Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M. Y., & Aucouturier, M. (1999). Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surface and Interface Analysis, 27(7), 629-637. doi:10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0 es_ES
dc.description.references Macák, J. M., Tsuchiya, H., & Schmuki, P. (2005). High-Aspect-Ratio TiO2Nanotubes by Anodization of Titanium. Angewandte Chemie International Edition, 44(14), 2100-2102. doi:10.1002/anie.200462459 es_ES
dc.description.references Macak, J. M., Sirotna, K., & Schmuki, P. (2005). Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochimica Acta, 50(18), 3679-3684. doi:10.1016/j.electacta.2005.01.014 es_ES
dc.description.references Vasilev, K., Poh, Z., Kant, K., Chan, J., Michelmore, A., & Losic, D. (2010). Tailoring the surface functionalities of titania nanotube arrays. Biomaterials, 31(3), 532-540. doi:10.1016/j.biomaterials.2009.09.074 es_ES
dc.description.references Macak, J. M., Tsuchiya, H., Taveira, L., Aldabergerova, S., & Schmuki, P. (2005). Smooth Anodic TiO2 Nanotubes. Angewandte Chemie International Edition, 44(45), 7463-7465. doi:10.1002/anie.200502781 es_ES
dc.description.references Albu, S. P., Ghicov, A., Macak, J. M., & Schmuki, P. (2007). 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. physica status solidi (RRL) – Rapid Research Letters, 1(2), R65-R67. doi:10.1002/pssr.200600069 es_ES
dc.description.references Albu, S. P., Roy, P., Virtanen, S., & Schmuki, P. (2010). Self-organized TiO2 Nanotube Arrays: Critical Effects on Morphology and Growth. Israel Journal of Chemistry, 50(4), 453-467. doi:10.1002/ijch.201000059 es_ES
dc.description.references Roy, P., Berger, S., & Schmuki, P. (2011). TiO2 Nanotubes: Synthesis and Applications. Angewandte Chemie International Edition, 50(13), 2904-2939. doi:10.1002/anie.201001374 es_ES
dc.description.references Hebert, K. R., Albu, S. P., Paramasivam, I., & Schmuki, P. (2011). Morphological instability leading to formation of porous anodic oxide films. Nature Materials, 11(2), 162-166. doi:10.1038/nmat3185 es_ES
dc.description.references Yasuda, K., & Schmuki, P. (2007). Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH4)2SO4/NH4F electrolytes. Electrochimica Acta, 52(12), 4053-4061. doi:10.1016/j.electacta.2006.11.023 es_ES
dc.description.references Macak, J. M., Hildebrand, H., Marten-Jahns, U., & Schmuki, P. (2008). Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. Journal of Electroanalytical Chemistry, 621(2), 254-266. doi:10.1016/j.jelechem.2008.01.005 es_ES
dc.description.references Macak, J. M., Tsuchiya, H., Ghicov, A., Yasuda, K., Hahn, R., Bauer, S., & Schmuki, P. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1-2), 3-18. doi:10.1016/j.cossms.2007.08.004 es_ES
dc.description.references Kim, D., Schmidt-Stein, F., Hahn, R., & Schmuki, P. (2008). Gravity assisted growth of self-organized anodic oxide nanotubes on titanium. Electrochemistry Communications, 10(7), 1082-1086. doi:10.1016/j.elecom.2008.05.016 es_ES
dc.description.references Mohapatra, S. K., Misra, M., Mahajan, V. K., & Raja, K. S. (2008). Synthesis of Y-branched TiO2 nanotubes. Materials Letters, 62(12-13), 1772-1774. doi:10.1016/j.matlet.2007.09.083 es_ES
dc.description.references Beranek, R., Hildebrand, H., & Schmuki, P. (2003). Self-Organized Porous Titanium Oxide Prepared in H[sub 2]SO[sub 4]/HF Electrolytes. Electrochemical and Solid-State Letters, 6(3), B12. doi:10.1149/1.1545192 es_ES
dc.description.references Kim, D., Ghicov, A., & Schmuki, P. (2008). TiO2 Nanotube arrays: Elimination of disordered top layers («nanograss») for improved photoconversion efficiency in dye-sensitized solar cells. Electrochemistry Communications, 10(12), 1835-1838. doi:10.1016/j.elecom.2008.09.029 es_ES
dc.description.references Song, Y.-Y., Lynch, R., Kim, D., Roy, P., & Schmuki, P. (2009). TiO[sub 2] Nanotubes: Efficient Suppression of Top Etching during Anodic Growth. Electrochemical and Solid-State Letters, 12(7), C17. doi:10.1149/1.3126500 es_ES
dc.description.references Albu, S. P., & Schmuki, P. (2010). Highly defined and ordered top-openings in TiO2 nanotube arrays. physica status solidi (RRL) - Rapid Research Letters, 4(7), 151-153. doi:10.1002/pssr.201004159 es_ES
dc.description.references Ghicov, A., Albu, S. P., Hahn, R., Kim, D., Stergiopoulos, T., Kunze, J., … Schmuki, P. (2009). TiO2Nanotubes in Dye-Sensitized Solar Cells: Critical Factors for the Conversion Efficiency. Chemistry - An Asian Journal, 4(4), 520-525. doi:10.1002/asia.200800441 es_ES


This item appears in the following Collection(s)

Show simple item record