- -

Note about lindelof Sigma-SPACES nu X

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Note about lindelof Sigma-SPACES nu X

Show full item record

Kakol, J.; López Pellicer, M. (2012). Note about lindelof Sigma-SPACES nu X. Bulletin of the Australian Mathematical Society. 85(1):114-120. https://doi.org/10.1017/S000497271100270X

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31895

Files in this item

Item Metadata

Title: Note about lindelof Sigma-SPACES nu X
Author: Kakol, Jerzy López Pellicer, Manuel
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
The paper deals with the following problem: characterize Tichonov spaces X whose realcompactification ¿X is a Lindelöf ¿-space. There are many situations (both in topology and functional analysis) where Lindelöf ¿ (even ...[+]
Subjects: Countable tightness , K-analytic , Locally convex spaces , Realcompactification , Spaces of continuous real-valued maps , Web-bounded spaces , Lindelöf Sigma-spaces
Copyrigths: Cerrado
Source:
Bulletin of the Australian Mathematical Society. (issn: 0004-9727 ) (eissn: 1755-1633 )
DOI: 10.1017/S000497271100270X
Publisher:
Cambridge University Press
Publisher version: http://dx.doi.org/10.1017/S000497271100270X
Project ID:
info:eu-repo/grantAgreement/MNiSW//NN201 2740 33/
info:eu-repo/grantAgreement/MICINN//MTM2008-01502/ES/ELEMENTOS DE TOPOLOGIA DESCRIPTIVA DE CONJUNTOS EN ANALISIS FUNCIONAL LINEAL/
Thanks:
This research is supported by the project of Ministry of Science and Higher Education, Poland, grant no. N 201 2740 33 and project MTM2008-01502 of the Spanish Ministry of Science and Innovation.
Type: Artículo

References

FERRANDO, J. C., & KĄKOL, J. (2008). A NOTE ON SPACES Cp(X)K-ANALYTIC-FRAMED IN ℝX. Bulletin of the Australian Mathematical Society, 78(1), 141-146. doi:10.1017/s0004972708000567

Orihuela, J. (1987). Pointwise Compactness in Spaces of Continuous Functions. Journal of the London Mathematical Society, s2-36(1), 143-152. doi:10.1112/jlms/s2-36.1.143

Okunev, O. G. (1993). On Lindelöf Σ-spaces of continuous functions in the pointwise topology. Topology and its Applications, 49(2), 149-166. doi:10.1016/0166-8641(93)90041-b [+]
FERRANDO, J. C., & KĄKOL, J. (2008). A NOTE ON SPACES Cp(X)K-ANALYTIC-FRAMED IN ℝX. Bulletin of the Australian Mathematical Society, 78(1), 141-146. doi:10.1017/s0004972708000567

Orihuela, J. (1987). Pointwise Compactness in Spaces of Continuous Functions. Journal of the London Mathematical Society, s2-36(1), 143-152. doi:10.1112/jlms/s2-36.1.143

Okunev, O. G. (1993). On Lindelöf Σ-spaces of continuous functions in the pointwise topology. Topology and its Applications, 49(2), 149-166. doi:10.1016/0166-8641(93)90041-b

Cascales, B., & Orihuela, J. (1987). On compactness in locally convex spaces. Mathematische Zeitschrift, 195(3), 365-381. doi:10.1007/bf01161762

Arkhangel’skii, A. V. (1992). Topological Function Spaces. Mathematics and Its Applications. doi:10.1007/978-94-011-2598-7

Cascales, B. (1987). OnK-analytic locally convex spaces. Archiv der Mathematik, 49(3), 232-244. doi:10.1007/bf01271663

Nagami, K. (1969). Σ-spaces. Fundamenta Mathematicae, 65(2), 169-192. doi:10.4064/fm-65-2-169-192

Cascales, B., Ka̧kol, J., & Saxon, S. A. (2002). Weight of precompact subsets and tightness. Journal of Mathematical Analysis and Applications, 269(2), 500-518. doi:10.1016/s0022-247x(02)00032-x

Ferrando, J. C. (2009). Some characterizations for υX to be Lindelöf Σ or K-analytic in terms of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mo stretchy=«false»>(</mml:mo><mml:mi>X</mml:mi><mml:mo stretchy=«false»>)</mml:mo></mml:math>. Topology and its Applications, 156(4), 823-830. doi:10.1016/j.topol.2008.10.016

Ferrando, J. C., Ka̧kol, J., López Pellicer, M., & Saxon, S. A. (2008). Quasi-Suslin weak duals. Journal of Mathematical Analysis and Applications, 339(2), 1253-1263. doi:10.1016/j.jmaa.2007.07.081

Cascales, B., Kąkol, J., & Saxon, S. A. (2003). Proceedings of the American Mathematical Society, 131(11), 3623-3632. doi:10.1090/s0002-9939-03-06944-2

Ka̧kol, J., & López Pellicer, M. (2007). Compact coverings for Baire locally convex spaces. Journal of Mathematical Analysis and Applications, 332(2), 965-974. doi:10.1016/j.jmaa.2006.10.045

Valdivia, M. (1987). Quasi-LB-Spaces. Journal of the London Mathematical Society, s2-35(1), 149-168. doi:10.1112/jlms/s2-35.1.149

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record