FERRANDO, J. C., & KĄKOL, J. (2008). A NOTE ON SPACES Cp(X)K-ANALYTIC-FRAMED IN ℝX. Bulletin of the Australian Mathematical Society, 78(1), 141-146. doi:10.1017/s0004972708000567
Orihuela, J. (1987). Pointwise Compactness in Spaces of Continuous Functions. Journal of the London Mathematical Society, s2-36(1), 143-152. doi:10.1112/jlms/s2-36.1.143
Okunev, O. G. (1993). On Lindelöf Σ-spaces of continuous functions in the pointwise topology. Topology and its Applications, 49(2), 149-166. doi:10.1016/0166-8641(93)90041-b
[+]
FERRANDO, J. C., & KĄKOL, J. (2008). A NOTE ON SPACES Cp(X)K-ANALYTIC-FRAMED IN ℝX. Bulletin of the Australian Mathematical Society, 78(1), 141-146. doi:10.1017/s0004972708000567
Orihuela, J. (1987). Pointwise Compactness in Spaces of Continuous Functions. Journal of the London Mathematical Society, s2-36(1), 143-152. doi:10.1112/jlms/s2-36.1.143
Okunev, O. G. (1993). On Lindelöf Σ-spaces of continuous functions in the pointwise topology. Topology and its Applications, 49(2), 149-166. doi:10.1016/0166-8641(93)90041-b
Cascales, B., & Orihuela, J. (1987). On compactness in locally convex spaces. Mathematische Zeitschrift, 195(3), 365-381. doi:10.1007/bf01161762
Arkhangel’skii, A. V. (1992). Topological Function Spaces. Mathematics and Its Applications. doi:10.1007/978-94-011-2598-7
Cascales, B. (1987). OnK-analytic locally convex spaces. Archiv der Mathematik, 49(3), 232-244. doi:10.1007/bf01271663
Nagami, K. (1969). Σ-spaces. Fundamenta Mathematicae, 65(2), 169-192. doi:10.4064/fm-65-2-169-192
Cascales, B., Ka̧kol, J., & Saxon, S. A. (2002). Weight of precompact subsets and tightness. Journal of Mathematical Analysis and Applications, 269(2), 500-518. doi:10.1016/s0022-247x(02)00032-x
Ferrando, J. C. (2009). Some characterizations for υX to be Lindelöf Σ or K-analytic in terms of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mo stretchy=«false»>(</mml:mo><mml:mi>X</mml:mi><mml:mo stretchy=«false»>)</mml:mo></mml:math>. Topology and its Applications, 156(4), 823-830. doi:10.1016/j.topol.2008.10.016
Ferrando, J. C., Ka̧kol, J., López Pellicer, M., & Saxon, S. A. (2008). Quasi-Suslin weak duals. Journal of Mathematical Analysis and Applications, 339(2), 1253-1263. doi:10.1016/j.jmaa.2007.07.081
Cascales, B., Kąkol, J., & Saxon, S. A. (2003). Proceedings of the American Mathematical Society, 131(11), 3623-3632. doi:10.1090/s0002-9939-03-06944-2
Ka̧kol, J., & López Pellicer, M. (2007). Compact coverings for Baire locally convex spaces. Journal of Mathematical Analysis and Applications, 332(2), 965-974. doi:10.1016/j.jmaa.2006.10.045
Valdivia, M. (1987). Quasi-LB-Spaces. Journal of the London Mathematical Society, s2-35(1), 149-168. doi:10.1112/jlms/s2-35.1.149
[-]