- -

Discrete dynamics on noncommutative CW complexes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Discrete dynamics on noncommutative CW complexes

Show full item record

Milani, V.; Mansourbeigi, S. (2013). Discrete dynamics on noncommutative CW complexes. Applied General Topology. 14(2):179-193. doi:10.4995/agt.2013.1671.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/32891

Files in this item

Item Metadata

Title: Discrete dynamics on noncommutative CW complexes
Author: Milani, Vida Mansourbeigi, Seyed
Issued date:
Abstract:
[EN] The concept of discrete multivalued dynamical systems for noncommutative CW complexes is developed. Stable and unstable manifolds are introduced and their role in geometric and topological configurations of noncommutative ...[+]
Subjects: Closed hemi-continuous , C*-algebra , CW complexes , Discrete dynamical system , Modified Morse function , Noncommutative CW complex , Open hemi-continuous, , Stable manifold , Unstable manifold
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2013.1671
Publisher:
Editorial Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2013.1671
Type: Artículo

References

Allili, M., Corriveau, D., Derivière, S., Kaczynski, T., & Trahan, A. (2007). Discrete Dynamical System Framework for Construction of Connections between Critical Regions in Lattice Height Data. Journal of Mathematical Imaging and Vision, 28(2), 99-111. doi:10.1007/s10851-007-0010-0

A. Connes, Noncommutative Geometry (Academic Press, San Diego1994).

S. Eilers, T.A. Loring, G.K. Pedersen, Stability of Anticommutation Relations: an application to NCCW complexes, J. Reine Angew Math. 99 (1998). [+]
Allili, M., Corriveau, D., Derivière, S., Kaczynski, T., & Trahan, A. (2007). Discrete Dynamical System Framework for Construction of Connections between Critical Regions in Lattice Height Data. Journal of Mathematical Imaging and Vision, 28(2), 99-111. doi:10.1007/s10851-007-0010-0

A. Connes, Noncommutative Geometry (Academic Press, San Diego1994).

S. Eilers, T.A. Loring, G.K. Pedersen, Stability of Anticommutation Relations: an application to NCCW complexes, J. Reine Angew Math. 99 (1998).

Kaczynski, T., & Mrozek, M. (1995). Conley index for discrete multi-valued dynamical systems. Topology and its Applications, 65(1), 83-96. doi:10.1016/0166-8641(94)00088-k

J. Milnor, Morse Theory, Annals of Math. Studies, (Princeton Univ. Press, 1963).

V. Milani, A. A. Rezaei, S. M. H. Mansourbeigi, Morse Theory for C*-Algebras: A geometric Interpretation of some Noncommutative Manifolds, Applied General Topology 12 (2011) 175-185.

G.K. Pedersen, Pull Back and Pushout Constructions in C*-Algebras, J. Funct. Analysis 167 (1999).

J. H. C. Whitehead, Combinatorial Homotopy, I. Bulletin of the American Society 55 (1949) 1133-1145.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record