- -

Role of fibronectin in topographical guidance of neurite extension onelectrospun fibers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Role of fibronectin in topographical guidance of neurite extension onelectrospun fibers

Show simple item record

Files in this item

dc.contributor.author Mukhatyar, Vivek J. es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.contributor.author Rudra, Soumon es_ES
dc.contributor.author Mukhopadaya, Shoumit es_ES
dc.contributor.author Barker, Thomas H. es_ES
dc.contributor.author Garcia, Andres J. es_ES
dc.contributor.author Bellamkonda, Ravi V. es_ES
dc.date.accessioned 2013-10-31T13:40:33Z
dc.date.issued 2011
dc.identifier.issn 0142-9612
dc.identifier.uri http://hdl.handle.net/10251/33172
dc.description.abstract Bridging of long peripheral nerve gaps remains a significant clinical challenge. Electrospun nanofibers have been used to direct and enhance neurite extension in vitro and in vivo. While it is well established that oriented fibers influence neurite outgrowth and Schwann cell migration, the mechanisms by which they influence these cells are still unclear. In this study, thin films consisting of aligned poly-acrylonitrile methylacrylate (PAN-MA) fibers or solvent casted smooth, PAN-MA films were fabricated to investigate the potential role of differential protein adsorption on topography-dependent neural cell responses. Aligned nanofiber films promoted enhanced adsorption of fibronectin compared to smooth films. Studies employing function-blocking antibodies against cell adhesion motifs suggest that fibronectin plays an important role in modulating Schwann cell migration and neurite outgrowth from dorsal root ganglion (DRG) cultures. Atomic Force Microscopy demonstrated that aligned PAN-MA fibers influenced fibronectin distribution, and promoted aligned fibronectin network formation compared to smooth PAN-MA films. In the presence of topographical cues, Schwann cell-generated fibronectin matrix was also organized in a topographically sensitive manner. Together these results suggest that fibronectin adsorption mediated the ability of topographical cues to influence Schwann cell migration and neurite outgrowth. These insights are significant to the development of rational approaches to scaffold designs to bridge long peripheral nerve gaps. © 2011 Elsevier Ltd. es_ES
dc.description.sponsorship The authors would like to acknowledge support from the following grants: NIH R01NS065109, NIH R01NS044409 and NSF graduate research fellowship. HFN7.1 and M18 antibody was obtained from the Developmental Studies Hybridoma Bank, which was developed under the auspices of the National Institute of Child Health and Human Development and is maintained by the University of Iowa, Department of Biological Sciences. Manuel Solmeron-Sanchez was supported by the Spanish Government through PR2009-0351 to stay in Atlanta (Georgia Institute of Technology) for a sabbatical during 2010. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation NIH [R01NS065109, R01NS044409] es_ES
dc.relation NSF es_ES
dc.relation Spanish Government [PR2009-0351] es_ES
dc.relation.ispartof Biomaterials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrospun nanofibers es_ES
dc.subject Fibronectin es_ES
dc.subject Neural tissue engineering es_ES
dc.subject Peripheral nerve regeneration es_ES
dc.subject Protein distribution es_ES
dc.subject Schwann cell migration es_ES
dc.subject Schwann cells es_ES
dc.subject Adhesion es_ES
dc.subject Adsorption es_ES
dc.subject Atomic force microscopy es_ES
dc.subject Cell adhesion es_ES
dc.subject Electrospinning es_ES
dc.subject Fibers es_ES
dc.subject Nanofibers es_ES
dc.subject Neurons es_ES
dc.subject Proteins es_ES
dc.subject Tissue engineering es_ES
dc.subject Topography es_ES
dc.subject Cell culture es_ES
dc.subject Acrylic acid methyl ester es_ES
dc.subject Nanofiber es_ES
dc.subject Polyacrylonitrile es_ES
dc.subject Animal cell es_ES
dc.subject Article es_ES
dc.subject Cell migration es_ES
dc.subject Controlled study es_ES
dc.subject Dorsal root es_ES
dc.subject Film es_ES
dc.subject Nerve fiber growth es_ES
dc.subject Neurite es_ES
dc.subject Nonhuman es_ES
dc.subject Priority journal es_ES
dc.subject Rat es_ES
dc.subject Schwann cell es_ES
dc.subject Animals es_ES
dc.subject Animals, Newborn es_ES
dc.subject Cell Movement es_ES
dc.subject Cells, Cultured es_ES
dc.subject Fibronectins es_ES
dc.subject Ganglia, Spinal es_ES
dc.subject Microscopy, Atomic Force es_ES
dc.subject Microscopy, Electron, Scanning es_ES
dc.subject Neurites es_ES
dc.subject Polymers es_ES
dc.subject Rats es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Role of fibronectin in topographical guidance of neurite extension onelectrospun fibers es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1016/j.biomaterials.2011.02.015
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Mukhatyar, VJ.; Salmerón Sánchez, M.; Rudra, S.; Mukhopadaya, S.; Barker, TH.; Garcia, AJ.; Bellamkonda, RV. (2011). Role of fibronectin in topographical guidance of neurite extension onelectrospun fibers. Biomaterials. 32(16):3958-3968. doi:10.1016/j.biomaterials.2011.02.015 es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.biomaterials.2011.02.015 es_ES
dc.description.upvformatpinicio 3958 es_ES
dc.description.upvformatpfin 3968 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 32 es_ES
dc.description.issue 16 es_ES
dc.relation.senia 219312


This item appears in the following Collection(s)

Show simple item record