Mostrar el registro sencillo del ítem
dc.contributor.author | Sans, Victor | es_ES |
dc.contributor.author | Karbass, Naima | es_ES |
dc.contributor.author | Burguete, M. Isabel | es_ES |
dc.contributor.author | Compañ Moreno, Vicente | es_ES |
dc.contributor.author | García-Verdugo, Eduardo | es_ES |
dc.contributor.author | Luis, Santiago V. | es_ES |
dc.contributor.author | Pawlak, Milena | |
dc.date.accessioned | 2013-11-06T09:43:52Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0947-6539 | |
dc.identifier.uri | http://hdl.handle.net/10251/33282 | |
dc.description.abstract | Abstract: The physico-chemical properties of polymers with ionic-liquid-like moieties covalently bound to their surfaces (SILLPs) have been studied by thermal and spectroscopic techniques, as well as by direct impedance and dielectric measurements, and compared to those of the corresponding bulk ionic liquids. The effective transfer of properties from ionic liquids in solution to the supported species has thereby been demonstrated. The effects of the chemical nature of these tunable ¿solid solvents¿ on their macroscopic swelling and microwave heating, as well as the stabilities and activities of different catalytic moieties immobilized on the SILLPs, have been studied. Finally, the experimental effect observed in microwave heating can be directly correlated with the values of tand derived from dielectric measurements. | es_ES |
dc.description.sponsorship | We thank the Spanish MICINN and Feder Funds (CTQ2008-04412/BQU) and the CSIC (2009-801092), GV, and Feder Funds (ACOMP/2010/280 and IMPIVA IMIDIC/2009/155), and Bancaixa-UJI (P1 2009-58) for financial support. | en_EN |
dc.format.extent | 13 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Catalysis | es_ES |
dc.subject | Ionic liquids | es_ES |
dc.subject | Polarity | es_ES |
dc.subject | Solvatochromism | es_ES |
dc.subject | Supported catalysts | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Polymer-Supported Ionic-Liquid-Like Phases (SILLPs): Transferring Ionic Liquid Properties to Polymeric Matrices | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/chem.201001873 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2008-04412/ES/LIQUIDOS IONICOS SOPORTADOS: SILLPS, APLICACIONES EN PROCESOS DE CATALISIS Y SEPARACION/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/CSIC//2009801092/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2010%2F280/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//IMIDIC%2F2009%2F155/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/Fundación Bancaja//P1 2009-58/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Sans, V.; Karbass, N.; Burguete, MI.; Compañ Moreno, V.; García-Verdugo, E.; Luis, SV.; Pawlak, M. (2011). Polymer-Supported Ionic-Liquid-Like Phases (SILLPs): Transferring Ionic Liquid Properties to Polymeric Matrices. Chemistry - A European Journal. 17:1894-1906. https://doi.org/10.1002/chem.201001873 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/chem.201001873 | es_ES |
dc.description.upvformatpinicio | 1894 | es_ES |
dc.description.upvformatpfin | 1906 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.relation.senia | 193898 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | European Regional Development Fund | |
dc.contributor.funder | Instituto de la Pequeña y Mediana Industria de la Generalitat Valenciana | |
dc.contributor.funder | Fundación Bancaja | |
dc.contributor.funder | Universitat Jaume I | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.description.references | Martins, M. A. P., Frizzo, C. P., Moreira, D. N., Zanatta, N., & Bonacorso, H. G. (2008). Ionic Liquids in Heterocyclic Synthesis. Chemical Reviews, 108(6), 2015-2050. doi:10.1021/cr078399y | es_ES |
dc.description.references | Singh, R., Sharma, M., Mamgain, R., & Rawat, D. S. (2008). Ionic liquids: a versatile medium for palladium-catalyzed reactions. Journal of the Brazilian Chemical Society, 19(3), 357-379. doi:10.1590/s0103-50532008000300002 | es_ES |
dc.description.references | Domínguez de María, P. (2008). «Nonsolvens»-Anwendungen von ionischen Flüssigkeiten bei Biotransformationen und in der Organokatalyse. Angewandte Chemie, 120(37), 7066-7075. doi:10.1002/ange.200703305 | es_ES |
dc.description.references | Domínguez de María, P. (2008). «Nonsolvent» Applications of Ionic Liquids in Biotransformations and Organocatalysis. Angewandte Chemie International Edition, 47(37), 6960-6968. doi:10.1002/anie.200703305 | es_ES |
dc.description.references | Welton, T. (2004). Ionic liquids in catalysis. Coordination Chemistry Reviews, 248(21-24), 2459-2477. doi:10.1016/j.ccr.2004.04.015 | es_ES |
dc.description.references | Rogers, R. D. (2003). CHEMISTRY: Ionic Liquids--Solvents of the Future? Science, 302(5646), 792-793. doi:10.1126/science.1090313 | es_ES |
dc.description.references | Jastorff, B., Störmann, R., Ranke, J., Mölter, K., Stock, F., Oberheitmann, B., … Filser, J. (2003). How hazardous are ionic liquids? Structure–activity relationships and biological testing as important elements for sustainability evaluationThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal, Germany, 13–16th October 2002. Green Chemistry, 5(2), 136-142. doi:10.1039/b211971d | es_ES |
dc.description.references | ZHENG, Q., TAN, Z., WANG, D., HAO, A., LIU, B., LÜ, X., & SHI, Q. (2009). Calorimetric Study and Thermal Analysis of 4-(Aminomethyl) Benzoic Acid. Chinese Journal of Chemistry, 27(4), 672-676. doi:10.1002/cjoc.200990110 | es_ES |
dc.description.references | Stolte, S., Abdulkarim, S., Arning, J., Blomeyer-Nienstedt, A.-K., Bottin-Weber, U., Matzke, M., … Thöming, J. (2008). Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds. Green Chem., 10(2), 214-224. doi:10.1039/b713095c | es_ES |
dc.description.references | Harjani, J. R., Farrell, J., Garcia, M. T., Singer, R. D., & Scammells, P. J. (2009). Further investigation of the biodegradability of imidazolium ionic liquids. Green Chemistry, 11(6), 821. doi:10.1039/b900787c | es_ES |
dc.description.references | Valkenberg, M. H., deCastro, C., & Hölderich, W. F. (2001). Immobilisation of ionic liquids on solid supports. Green Chemistry, 4(2), 88-93. doi:10.1039/b107946h | es_ES |
dc.description.references | Riisagera, A., Fehrmanna, R., Haumannb, M., & Wasserscheidb, P. (2006). Supported ionic liquids: versatile reaction and separation media. Topics in Catalysis, 40(1-4), 91-102. doi:10.1007/s11244-006-0111-9 | es_ES |
dc.description.references | Gu, Y., & Li, G. (2009). Ionic Liquids-Based Catalysis with Solids: State of the Art. Advanced Synthesis & Catalysis, 351(6), 817-847. doi:10.1002/adsc.200900043 | es_ES |
dc.description.references | Kim, D. W., & Chi, D. Y. (2004). Polymer-Supported Ionic Liquids: Imidazolium Salts as Catalysts for Nucleophilic Substitution Reactions Including Fluorinations. Angewandte Chemie, 116(4), 489-491. doi:10.1002/ange.200352760 | es_ES |
dc.description.references | Kim, D. W., & Chi, D. Y. (2004). Polymer-Supported Ionic Liquids: Imidazolium Salts as Catalysts for Nucleophilic Substitution Reactions Including Fluorinations. Angewandte Chemie International Edition, 43(4), 483-485. doi:10.1002/anie.200352760 | es_ES |
dc.description.references | Kim, D. W., Hong, D. J., Jang, K. S., & Chi, D. Y. (2006). Structural Modification of Polymer-Supported Ionic Liquids as Catalysts for Nucleophilic Substitution Reactions Including Fluorination. Advanced Synthesis & Catalysis, 348(12-13), 1719-1727. doi:10.1002/adsc.200606119 | es_ES |
dc.description.references | Kim, D. W., Jeong, H.-J., Lim, S. T., Sohn, M.-H., & Chi, D. Y. (2008). Facile nucleophilic fluorination by synergistic effect between polymer-supported ionic liquid catalyst and tert-alcohol reaction media system. Tetrahedron, 64(19), 4209-4214. doi:10.1016/j.tet.2008.02.094 | es_ES |
dc.description.references | Neumann, R., & Cohen, M. (1997). Lösungsmittel-angebundene Supported-Liquid-Phase-Katalyse: Polyoxometallat-katalysierte Oxidationen. Angewandte Chemie, 109(16), 1810-1812. doi:10.1002/ange.19971091619 | es_ES |
dc.description.references | Neumann, R., & Cohen, M. (1997). Solvent-Anchored Supported Liquid Phase Catalysis: Polyoxometalate-Catalyzed Oxidations. Angewandte Chemie International Edition in English, 36(16), 1738-1740. doi:10.1002/anie.199717381 | es_ES |
dc.description.references | Biffis, A., Zecca, M., & Basato, M. (2003). A green protocol for the silylation of alcohols using bonded fluorous phase catalysisThis work was presented at the Green Solvents for Catalysis Meeting, held in Bruchsal, Germany, 13–16th October 2002. Green Chemistry, 5(2), 170-173. doi:10.1039/b210992a | es_ES |
dc.description.references | Hope, E. G., Sherrington, J., & Stuart, A. M. (2006). Supported Fluorous Phase Catalysis on PTFE, Fluoroalkylated Micro- and Meso-porous Silica. Advanced Synthesis & Catalysis, 348(12-13), 1635-1639. doi:10.1002/adsc.200606141 | es_ES |
dc.description.references | Altava, B., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., Puzary, A., & Sans, V. (2006). Palladium N-methylimidazolium supported complexes as efficient catalysts for the Heck reaction. Tetrahedron Letters, 47(14), 2311-2314. doi:10.1016/j.tetlet.2006.02.023 | es_ES |
dc.description.references | Karbass, N., Sans, V., Garcia-Verdugo, E., Burguete, M. I., & Luis, S. V. (2006). Pd(0) supported onto monolithic polymers containing IL-like moieties. Continuous flow catalysis for the Heck reaction in near-critical EtOH. Chemical Communications, (29), 3095. doi:10.1039/b603224a | es_ES |
dc.description.references | Lozano, P., García-Verdugo, E., Piamtongkam, R., Karbass, N., De Diego, T., Burguete, M. I., … Iborra, J. L. (2007). Bioreactors Based on Monolith-Supported Ionic Liquid Phase for Enzyme Catalysis in Supercritical Carbon Dioxide. Advanced Synthesis & Catalysis, 349(7), 1077-1084. doi:10.1002/adsc.200600554 | es_ES |
dc.description.references | Burguete, M. I., Erythropel, H., Garcia-Verdugo, E., Luis, S. V., & Sans, V. (2008). Base supported ionic liquid-like phases as catalysts for the batch and continuous-flow Henry reaction. Green Chemistry, 10(4), 401. doi:10.1039/b714977h | es_ES |
dc.description.references | Burguete, M. I., Galindo, F., García-Verdugo, E., Karbass, N., & Luis, S. V. (2007). Polymer supported ionic liquid phases (SILPs) versus ionic liquids (ILs): How much do they look alike. Chem. Commun., (29), 3086-3088. doi:10.1039/b704611a | es_ES |
dc.description.references | Köddermann, T., Wertz, C., Heintz, A., & Ludwig, R. (2006). Die Assoziation von Wasser in ionischen Flüssigkeiten: eine verlässliche Sonde zur Bestimmung der Polarität. Angewandte Chemie, 118(22), 3780-3785. doi:10.1002/ange.200504471 | es_ES |
dc.description.references | Köddermann, T., Wertz, C., Heintz, A., & Ludwig, R. (2006). The Association of Water in Ionic Liquids: A Reliable Measure of Polarity. Angewandte Chemie International Edition, 45(22), 3697-3702. doi:10.1002/anie.200504471 | es_ES |
dc.description.references | Wulf, A., Köddermann, T., Wertz, C., Heintz, A., & Ludwig, R. (2006). Water Vibrational Bands as a Polarity Indicator in Ionic Liquids. Zeitschrift für Physikalische Chemie, 220(10), 1361-1376. doi:10.1524/zpch.2006.220.10.1361 | es_ES |
dc.description.references | Ngo, H. L., LeCompte, K., Hargens, L., & McEwen, A. B. (2000). Thermal properties of imidazolium ionic liquids. Thermochimica Acta, 357-358, 97-102. doi:10.1016/s0040-6031(00)00373-7 | es_ES |
dc.description.references | Baranyai, K. J., Deacon, G. B., MacFarlane, D. R., Pringle, J. M., & Scott, J. L. (2004). Thermal Degradation of Ionic Liquids at Elevated Temperatures. Australian Journal of Chemistry, 57(2), 145. doi:10.1071/ch03221 | es_ES |
dc.description.references | Gaviña, F., Luis, S. V., & Costero, A. M. (1982). Thermogravimetric studies of polymeric reagents: a polymeric o-benzyne precursor. Tetrahedron Letters, 23(23), 2403-2406. doi:10.1016/s0040-4039(00)87353-0 | es_ES |
dc.description.references | Li, Y., Fan, Y., & Ma, J. (2001). Thermal, physical and chemical stability of porous polystyrene-type beads with different degrees of crosslinking. Polymer Degradation and Stability, 73(1), 163-167. doi:10.1016/s0141-3910(01)00083-0 | es_ES |
dc.description.references | Huddleston, J. G., Visser, A. E., Reichert, W. M., Willauer, H. D., Broker, G. A., & Rogers, R. D. (2001). Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry, 3(4), 156-164. doi:10.1039/b103275p | es_ES |
dc.description.references | Chiappe, C., Malvaldi, M., & Pomelli, C. S. (2009). Ionic liquids: Solvation ability and polarity. Pure and Applied Chemistry, 81(4), 767-776. doi:10.1351/pac-con-08-09-08 | es_ES |
dc.description.references | Reichardt, C. (1992). Solvatochromism, thermochromism, piezochromism, halochromism, and chiro-solvatochromism of pyridinium N-phenoxide betaine dyes. Chemical Society Reviews, 21(3), 147. doi:10.1039/cs9922100147 | es_ES |
dc.description.references | Reichardt, C. (1994). Solvatochromic Dyes as Solvent Polarity Indicators. Chemical Reviews, 94(8), 2319-2358. doi:10.1021/cr00032a005 | es_ES |
dc.description.references | Paley, M. S., McGill, R. A., Howard, S. C., Wallace, S. E., & Harris, J. M. (1990). Solvatochromism: a new method for polymer characterization. Macromolecules, 23(21), 4557-4564. doi:10.1021/ma00223a011 | es_ES |
dc.description.references | Tavener, S. J., Clark, J. H., Gray, G. W., Heath, P. A., & Macquarrie, D. J. (1997). Reichardt’s dye as a probe for surface polarity of chemically and thermally treated silicas. Chemical Communications, (12), 1147-1148. doi:10.1039/a701681f | es_ES |
dc.description.references | Macquarrie, D. J., Tavener, S. J., Gray, G. W., Heath, P. A., Rafelt, J. S., Saulzet, S. I., … Fajula, F. (1999). The use of Reichardt’s dye as an indicator of surface polarity. New Journal of Chemistry, 23(7), 725-731. doi:10.1039/a901563i | es_ES |
dc.description.references | Reichardt, C. (2005). Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chemistry, 7(5), 339. doi:10.1039/b500106b | es_ES |
dc.description.references | Dzyuba, S. V., & Bartsch, R. A. (2002). Expanding the polarity range of ionic liquids. Tetrahedron Letters, 43(26), 4657-4659. doi:10.1016/s0040-4039(02)00858-4 | es_ES |
dc.description.references | (s. f.). doi:10.1021/jp053946 | es_ES |
dc.description.references | Weingärtner, H. (2006). The Static Dielectric Constant of Ionic Liquids. Zeitschrift für Physikalische Chemie, 220(10), 1395-1405. doi:10.1524/zpch.2006.220.10.1395 | es_ES |
dc.description.references | Cammarata, L., Kazarian, S. G., Salter, P. A., & Welton, T. (2001). Molecular states of water in room temperature ionic liquidsElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b106900d/. Physical Chemistry Chemical Physics, 3(23), 5192-5200. doi:10.1039/b106900d | es_ES |
dc.description.references | Nakajima, A. (1974). Solvent enhancement in the first singlet-singlet transition of pyrene-d10. Spectrochimica Acta Part A: Molecular Spectroscopy, 30(3), 860-862. doi:10.1016/0584-8539(74)80203-5 | es_ES |
dc.description.references | Dong, D. C., & Winnik, M. A. (1982). THE Py SCALE OF SOLVENT POLARITIES. SOLVENT EFFECTS ON THE VIBRONIC FINE STRUCTURE OF PYRENE FLUORESCENCE and EMPIRICAL CORRELATIONS WITH ETand Y VALUES. Photochemistry and Photobiology, 35(1), 17-21. doi:10.1111/j.1751-1097.1982.tb03805.x | es_ES |
dc.description.references | Lianos, P., & Georghiou, S. (1979). SOLUTE-SOLVENT INTERACTION AND ITS EFFECT ON THE VIBRONIC AND VIBRATIONAL STRUCTURE OF PYRENE SPECTRA. Photochemistry and Photobiology, 30(3), 355-362. doi:10.1111/j.1751-1097.1979.tb07368.x | es_ES |
dc.description.references | Dong, D. C., & Winnik, M. A. (1984). The Py scale of solvent polarities. Canadian Journal of Chemistry, 62(11), 2560-2565. doi:10.1139/v84-437 | es_ES |
dc.description.references | Fletcher, K. A., Storey, I. A., Hendricks, A. E., Pandey, S., & Pandey, S. (2001). Behavior of the solvatochromic probes Reichardt’s dye, pyrene, dansylamide, Nile Red and 1-pyrenecarbaldehyde within the room-temperature ionic liquid bmimPF6. Green Chemistry, 3(5), 210-215. doi:10.1039/b103592b | es_ES |
dc.description.references | Karpovich, D. S., & Blanchard, G. J. (1995). Relating the polarity-dependent fluorescence response of pyrene to vibronic coupling. Achieving a fundamental understanding of the py polarity scale. The Journal of Physical Chemistry, 99(12), 3951-3958. doi:10.1021/j100012a014 | es_ES |
dc.description.references | Nakashima, K., Winnik, M. A., Dai, K. H., Kramer, E. J., & Washiyama, J. (1992). Fluorescent probe studies on the microstructure of polystyrene-poly(vinylpyridine) diblock copolymer film. Macromolecules, 25(25), 6866-6870. doi:10.1021/ma00051a022 | es_ES |
dc.description.references | Kalyanasundaram, K., & Thomas, J. K. (1977). Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society, 99(7), 2039-2044. doi:10.1021/ja00449a004 | es_ES |
dc.description.references | Sherrington, D. C. (1998). Preparation, structure and morphology of polymer supports. Chemical Communications, (21), 2275-2286. doi:10.1039/a803757d | es_ES |
dc.description.references | Altava, B., Burguete, M. ., Garcı́a-Verdugo, E., Luis, S. ., Vicent, M. ., & Mayoral, J. . (2001). Supported chiral catalysts: the role of the polymeric network. Reactive and Functional Polymers, 48(1-3), 25-35. doi:10.1016/s1381-5148(01)00036-0 | es_ES |
dc.description.references | Garcia-Bernabé, A., Compañ, V., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., & Riande, E. (2010). Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. The Journal of Physical Chemistry C, 114(15), 7030-7037. doi:10.1021/jp910535z | es_ES |
dc.description.references | Tang, J., Radosz, M., & Shen, Y. (2008). Poly(ionic liquid)s as Optically Transparent Microwave-Absorbing Materials. Macromolecules, 41(2), 493-496. doi:10.1021/ma071762i | es_ES |
dc.description.references | Huang, M.-M., & Weingärtner, H. (2008). Protic Ionic Liquids with Unusually High Dielectric Permittivities. ChemPhysChem, 9(15), 2172-2173. doi:10.1002/cphc.200800523 | es_ES |
dc.description.references | Hunger, J., Stoppa, A., Schrödle, S., Hefter, G., & Buchner, R. (2009). Temperature Dependence of the Dielectric Properties and Dynamics of Ionic Liquids. ChemPhysChem, 10(4), 723-733. doi:10.1002/cphc.200800483 | es_ES |
dc.description.references | Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse. Angewandte Chemie, 117(48), 8062-8083. doi:10.1002/ange.200500766 | es_ES |
dc.description.references | Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872. doi:10.1002/anie.200500766 | es_ES |
dc.description.references | Migowski, P., & Dupont, J. (2006). Catalytic Applications of Metal Nanoparticles in Imidazolium Ionic Liquids. Chemistry - A European Journal, 13(1), 32-39. doi:10.1002/chem.200601438 | es_ES |
dc.description.references | Lozano, P., García-Verdugo, E., Karbass, N., Montague, K., De Diego, T., Burguete, M. I., & Luis, S. V. (2010). Supported Ionic Liquid-Like Phases (SILLPs) for enzymatic processes: Continuous KR and DKR in SILLP–scCO2 systems. Green Chemistry, 12(10), 1803. doi:10.1039/c0gc00076k | es_ES |
dc.description.references | Burguete, M. I., García-Verdugo, E., Garcia-Villar, I., Gelat, F., Licence, P., Luis, S. V., & Sans, V. (2010). Pd catalysts immobilized onto gel-supported ionic liquid-like phases (g-SILLPs): A remarkable effect of the nature of the support. Journal of Catalysis, 269(1), 150-160. doi:10.1016/j.jcat.2009.11.002 | es_ES |
dc.description.references | Jiang, Y., Guo, C., Xia, H., Mahmood, I., Liu, C., & Liu, H. (2009). Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification. Journal of Molecular Catalysis B: Enzymatic, 58(1-4), 103-109. doi:10.1016/j.molcatb.2008.12.001 | es_ES |
dc.description.references | Nakashima, K., Kamiya, N., Koda, D., Maruyama, T., & Goto, M. (2009). Enzyme encapsulation in microparticles composed of polymerized ionic liquids for highly active and reusable biocatalysts. Organic & Biomolecular Chemistry, 7(11), 2353. doi:10.1039/b823064a | es_ES |
dc.description.references | Van Rantwijk, F., & Sheldon, R. A. (2007). Biocatalysis in Ionic Liquids. Chemical Reviews, 107(6), 2757-2785. doi:10.1021/cr050946x | es_ES |