- -

Polymer-Supported Ionic-Liquid-Like Phases (SILLPs): Transferring Ionic Liquid Properties to Polymeric Matrices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polymer-Supported Ionic-Liquid-Like Phases (SILLPs): Transferring Ionic Liquid Properties to Polymeric Matrices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sans, Victor es_ES
dc.contributor.author Karbass, Naima es_ES
dc.contributor.author Burguete, M. Isabel es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.contributor.author García-Verdugo, Eduardo es_ES
dc.contributor.author Luis, Santiago V. es_ES
dc.contributor.author Pawlak, Milena
dc.date.accessioned 2013-11-06T09:43:52Z
dc.date.issued 2011
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/33282
dc.description.abstract Abstract: The physico-chemical properties of polymers with ionic-liquid-like moieties covalently bound to their surfaces (SILLPs) have been studied by thermal and spectroscopic techniques, as well as by direct impedance and dielectric measurements, and compared to those of the corresponding bulk ionic liquids. The effective transfer of properties from ionic liquids in solution to the supported species has thereby been demonstrated. The effects of the chemical nature of these tunable ¿solid solvents¿ on their macroscopic swelling and microwave heating, as well as the stabilities and activities of different catalytic moieties immobilized on the SILLPs, have been studied. Finally, the experimental effect observed in microwave heating can be directly correlated with the values of tand derived from dielectric measurements. es_ES
dc.description.sponsorship We thank the Spanish MICINN and Feder Funds (CTQ2008-04412/BQU) and the CSIC (2009-801092), GV, and Feder Funds (ACOMP/2010/280 and IMPIVA IMIDIC/2009/155), and Bancaixa-UJI (P1 2009-58) for financial support. en_EN
dc.format.extent 13 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Catalysis es_ES
dc.subject Ionic liquids es_ES
dc.subject Polarity es_ES
dc.subject Solvatochromism es_ES
dc.subject Supported catalysts es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Polymer-Supported Ionic-Liquid-Like Phases (SILLPs): Transferring Ionic Liquid Properties to Polymeric Matrices es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/chem.201001873
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2008-04412/ES/LIQUIDOS IONICOS SOPORTADOS: SILLPS, APLICACIONES EN PROCESOS DE CATALISIS Y SEPARACION/
dc.relation.projectID info:eu-repo/grantAgreement/CSIC//2009801092/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2010%2F280/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IMIDIC%2F2009%2F155/
dc.relation.projectID info:eu-repo/grantAgreement/Fundación Bancaja//P1 2009-58/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Sans, V.; Karbass, N.; Burguete, MI.; Compañ Moreno, V.; García-Verdugo, E.; Luis, SV.; Pawlak, M. (2011). Polymer-Supported Ionic-Liquid-Like Phases (SILLPs): Transferring Ionic Liquid Properties to Polymeric Matrices. Chemistry - A European Journal. 17:1894-1906. https://doi.org/10.1002/chem.201001873 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/chem.201001873 es_ES
dc.description.upvformatpinicio 1894 es_ES
dc.description.upvformatpfin 1906 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.relation.senia 193898
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder European Regional Development Fund
dc.contributor.funder Instituto de la Pequeña y Mediana Industria de la Generalitat Valenciana
dc.contributor.funder Fundación Bancaja
dc.contributor.funder Universitat Jaume I
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Martins, M. A. P., Frizzo, C. P., Moreira, D. N., Zanatta, N., & Bonacorso, H. G. (2008). Ionic Liquids in Heterocyclic Synthesis. Chemical Reviews, 108(6), 2015-2050. doi:10.1021/cr078399y es_ES
dc.description.references Singh, R., Sharma, M., Mamgain, R., & Rawat, D. S. (2008). Ionic liquids: a versatile medium for palladium-catalyzed reactions. Journal of the Brazilian Chemical Society, 19(3), 357-379. doi:10.1590/s0103-50532008000300002 es_ES
dc.description.references Domínguez de María, P. (2008). «Nonsolvens»-Anwendungen von ionischen Flüssigkeiten bei Biotransformationen und in der Organokatalyse. Angewandte Chemie, 120(37), 7066-7075. doi:10.1002/ange.200703305 es_ES
dc.description.references Domínguez de María, P. (2008). «Nonsolvent» Applications of Ionic Liquids in Biotransformations and Organocatalysis. Angewandte Chemie International Edition, 47(37), 6960-6968. doi:10.1002/anie.200703305 es_ES
dc.description.references Welton, T. (2004). Ionic liquids in catalysis. Coordination Chemistry Reviews, 248(21-24), 2459-2477. doi:10.1016/j.ccr.2004.04.015 es_ES
dc.description.references Rogers, R. D. (2003). CHEMISTRY: Ionic Liquids--Solvents of the Future? Science, 302(5646), 792-793. doi:10.1126/science.1090313 es_ES
dc.description.references Jastorff, B., Störmann, R., Ranke, J., Mölter, K., Stock, F., Oberheitmann, B., … Filser, J. (2003). How hazardous are ionic liquids? Structure–activity relationships and biological testing as important elements for sustainability evaluationThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal, Germany, 13–16th October 2002. Green Chemistry, 5(2), 136-142. doi:10.1039/b211971d es_ES
dc.description.references ZHENG, Q., TAN, Z., WANG, D., HAO, A., LIU, B., LÜ, X., & SHI, Q. (2009). Calorimetric Study and Thermal Analysis of 4-(Aminomethyl) Benzoic Acid. Chinese Journal of Chemistry, 27(4), 672-676. doi:10.1002/cjoc.200990110 es_ES
dc.description.references Stolte, S., Abdulkarim, S., Arning, J., Blomeyer-Nienstedt, A.-K., Bottin-Weber, U., Matzke, M., … Thöming, J. (2008). Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds. Green Chem., 10(2), 214-224. doi:10.1039/b713095c es_ES
dc.description.references Harjani, J. R., Farrell, J., Garcia, M. T., Singer, R. D., & Scammells, P. J. (2009). Further investigation of the biodegradability of imidazolium ionic liquids. Green Chemistry, 11(6), 821. doi:10.1039/b900787c es_ES
dc.description.references Valkenberg, M. H., deCastro, C., & Hölderich, W. F. (2001). Immobilisation of ionic liquids on solid supports. Green Chemistry, 4(2), 88-93. doi:10.1039/b107946h es_ES
dc.description.references Riisagera, A., Fehrmanna, R., Haumannb, M., & Wasserscheidb, P. (2006). Supported ionic liquids: versatile reaction and separation media. Topics in Catalysis, 40(1-4), 91-102. doi:10.1007/s11244-006-0111-9 es_ES
dc.description.references Gu, Y., & Li, G. (2009). Ionic Liquids-Based Catalysis with Solids: State of the Art. Advanced Synthesis & Catalysis, 351(6), 817-847. doi:10.1002/adsc.200900043 es_ES
dc.description.references Kim, D. W., & Chi, D. Y. (2004). Polymer-Supported Ionic Liquids: Imidazolium Salts as Catalysts for Nucleophilic Substitution Reactions Including Fluorinations. Angewandte Chemie, 116(4), 489-491. doi:10.1002/ange.200352760 es_ES
dc.description.references Kim, D. W., & Chi, D. Y. (2004). Polymer-Supported Ionic Liquids: Imidazolium Salts as Catalysts for Nucleophilic Substitution Reactions Including Fluorinations. Angewandte Chemie International Edition, 43(4), 483-485. doi:10.1002/anie.200352760 es_ES
dc.description.references Kim, D. W., Hong, D. J., Jang, K. S., & Chi, D. Y. (2006). Structural Modification of Polymer-Supported Ionic Liquids as Catalysts for Nucleophilic Substitution Reactions Including Fluorination. Advanced Synthesis & Catalysis, 348(12-13), 1719-1727. doi:10.1002/adsc.200606119 es_ES
dc.description.references Kim, D. W., Jeong, H.-J., Lim, S. T., Sohn, M.-H., & Chi, D. Y. (2008). Facile nucleophilic fluorination by synergistic effect between polymer-supported ionic liquid catalyst and tert-alcohol reaction media system. Tetrahedron, 64(19), 4209-4214. doi:10.1016/j.tet.2008.02.094 es_ES
dc.description.references Neumann, R., & Cohen, M. (1997). Lösungsmittel-angebundene Supported-Liquid-Phase-Katalyse: Polyoxometallat-katalysierte Oxidationen. Angewandte Chemie, 109(16), 1810-1812. doi:10.1002/ange.19971091619 es_ES
dc.description.references Neumann, R., & Cohen, M. (1997). Solvent-Anchored Supported Liquid Phase Catalysis: Polyoxometalate-Catalyzed Oxidations. Angewandte Chemie International Edition in English, 36(16), 1738-1740. doi:10.1002/anie.199717381 es_ES
dc.description.references Biffis, A., Zecca, M., & Basato, M. (2003). A green protocol for the silylation of alcohols using bonded fluorous phase catalysisThis work was presented at the Green Solvents for Catalysis Meeting, held in Bruchsal, Germany, 13–16th October 2002. Green Chemistry, 5(2), 170-173. doi:10.1039/b210992a es_ES
dc.description.references Hope, E. G., Sherrington, J., & Stuart, A. M. (2006). Supported Fluorous Phase Catalysis on PTFE, Fluoroalkylated Micro- and Meso-porous Silica. Advanced Synthesis & Catalysis, 348(12-13), 1635-1639. doi:10.1002/adsc.200606141 es_ES
dc.description.references Altava, B., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., Puzary, A., & Sans, V. (2006). Palladium N-methylimidazolium supported complexes as efficient catalysts for the Heck reaction. Tetrahedron Letters, 47(14), 2311-2314. doi:10.1016/j.tetlet.2006.02.023 es_ES
dc.description.references Karbass, N., Sans, V., Garcia-Verdugo, E., Burguete, M. I., & Luis, S. V. (2006). Pd(0) supported onto monolithic polymers containing IL-like moieties. Continuous flow catalysis for the Heck reaction in near-critical EtOH. Chemical Communications, (29), 3095. doi:10.1039/b603224a es_ES
dc.description.references Lozano, P., García-Verdugo, E., Piamtongkam, R., Karbass, N., De Diego, T., Burguete, M. I., … Iborra, J. L. (2007). Bioreactors Based on Monolith-Supported Ionic Liquid Phase for Enzyme Catalysis in Supercritical Carbon Dioxide. Advanced Synthesis & Catalysis, 349(7), 1077-1084. doi:10.1002/adsc.200600554 es_ES
dc.description.references Burguete, M. I., Erythropel, H., Garcia-Verdugo, E., Luis, S. V., & Sans, V. (2008). Base supported ionic liquid-like phases as catalysts for the batch and continuous-flow Henry reaction. Green Chemistry, 10(4), 401. doi:10.1039/b714977h es_ES
dc.description.references Burguete, M. I., Galindo, F., García-Verdugo, E., Karbass, N., & Luis, S. V. (2007). Polymer supported ionic liquid phases (SILPs) versus ionic liquids (ILs): How much do they look alike. Chem. Commun., (29), 3086-3088. doi:10.1039/b704611a es_ES
dc.description.references Köddermann, T., Wertz, C., Heintz, A., & Ludwig, R. (2006). Die Assoziation von Wasser in ionischen Flüssigkeiten: eine verlässliche Sonde zur Bestimmung der Polarität. Angewandte Chemie, 118(22), 3780-3785. doi:10.1002/ange.200504471 es_ES
dc.description.references Köddermann, T., Wertz, C., Heintz, A., & Ludwig, R. (2006). The Association of Water in Ionic Liquids: A Reliable Measure of Polarity. Angewandte Chemie International Edition, 45(22), 3697-3702. doi:10.1002/anie.200504471 es_ES
dc.description.references Wulf, A., Köddermann, T., Wertz, C., Heintz, A., & Ludwig, R. (2006). Water Vibrational Bands as a Polarity Indicator in Ionic Liquids. Zeitschrift für Physikalische Chemie, 220(10), 1361-1376. doi:10.1524/zpch.2006.220.10.1361 es_ES
dc.description.references Ngo, H. L., LeCompte, K., Hargens, L., & McEwen, A. B. (2000). Thermal properties of imidazolium ionic liquids. Thermochimica Acta, 357-358, 97-102. doi:10.1016/s0040-6031(00)00373-7 es_ES
dc.description.references Baranyai, K. J., Deacon, G. B., MacFarlane, D. R., Pringle, J. M., & Scott, J. L. (2004). Thermal Degradation of Ionic Liquids at Elevated Temperatures. Australian Journal of Chemistry, 57(2), 145. doi:10.1071/ch03221 es_ES
dc.description.references Gaviña, F., Luis, S. V., & Costero, A. M. (1982). Thermogravimetric studies of polymeric reagents: a polymeric o-benzyne precursor. Tetrahedron Letters, 23(23), 2403-2406. doi:10.1016/s0040-4039(00)87353-0 es_ES
dc.description.references Li, Y., Fan, Y., & Ma, J. (2001). Thermal, physical and chemical stability of porous polystyrene-type beads with different degrees of crosslinking. Polymer Degradation and Stability, 73(1), 163-167. doi:10.1016/s0141-3910(01)00083-0 es_ES
dc.description.references Huddleston, J. G., Visser, A. E., Reichert, W. M., Willauer, H. D., Broker, G. A., & Rogers, R. D. (2001). Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry, 3(4), 156-164. doi:10.1039/b103275p es_ES
dc.description.references Chiappe, C., Malvaldi, M., & Pomelli, C. S. (2009). Ionic liquids: Solvation ability and polarity. Pure and Applied Chemistry, 81(4), 767-776. doi:10.1351/pac-con-08-09-08 es_ES
dc.description.references Reichardt, C. (1992). Solvatochromism, thermochromism, piezochromism, halochromism, and chiro-solvatochromism of pyridinium N-phenoxide betaine dyes. Chemical Society Reviews, 21(3), 147. doi:10.1039/cs9922100147 es_ES
dc.description.references Reichardt, C. (1994). Solvatochromic Dyes as Solvent Polarity Indicators. Chemical Reviews, 94(8), 2319-2358. doi:10.1021/cr00032a005 es_ES
dc.description.references Paley, M. S., McGill, R. A., Howard, S. C., Wallace, S. E., & Harris, J. M. (1990). Solvatochromism: a new method for polymer characterization. Macromolecules, 23(21), 4557-4564. doi:10.1021/ma00223a011 es_ES
dc.description.references Tavener, S. J., Clark, J. H., Gray, G. W., Heath, P. A., & Macquarrie, D. J. (1997). Reichardt’s dye as a probe for surface polarity of chemically and thermally treated silicas. Chemical Communications, (12), 1147-1148. doi:10.1039/a701681f es_ES
dc.description.references Macquarrie, D. J., Tavener, S. J., Gray, G. W., Heath, P. A., Rafelt, J. S., Saulzet, S. I., … Fajula, F. (1999). The use of Reichardt’s dye as an indicator of surface polarity. New Journal of Chemistry, 23(7), 725-731. doi:10.1039/a901563i es_ES
dc.description.references Reichardt, C. (2005). Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chemistry, 7(5), 339. doi:10.1039/b500106b es_ES
dc.description.references Dzyuba, S. V., & Bartsch, R. A. (2002). Expanding the polarity range of ionic liquids. Tetrahedron Letters, 43(26), 4657-4659. doi:10.1016/s0040-4039(02)00858-4 es_ES
dc.description.references (s. f.). doi:10.1021/jp053946 es_ES
dc.description.references Weingärtner, H. (2006). The Static Dielectric Constant of Ionic Liquids. Zeitschrift für Physikalische Chemie, 220(10), 1395-1405. doi:10.1524/zpch.2006.220.10.1395 es_ES
dc.description.references Cammarata, L., Kazarian, S. G., Salter, P. A., & Welton, T. (2001). Molecular states of water in room temperature ionic liquidsElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b106900d/. Physical Chemistry Chemical Physics, 3(23), 5192-5200. doi:10.1039/b106900d es_ES
dc.description.references Nakajima, A. (1974). Solvent enhancement in the first singlet-singlet transition of pyrene-d10. Spectrochimica Acta Part A: Molecular Spectroscopy, 30(3), 860-862. doi:10.1016/0584-8539(74)80203-5 es_ES
dc.description.references Dong, D. C., & Winnik, M. A. (1982). THE Py SCALE OF SOLVENT POLARITIES. SOLVENT EFFECTS ON THE VIBRONIC FINE STRUCTURE OF PYRENE FLUORESCENCE and EMPIRICAL CORRELATIONS WITH ETand Y VALUES. Photochemistry and Photobiology, 35(1), 17-21. doi:10.1111/j.1751-1097.1982.tb03805.x es_ES
dc.description.references Lianos, P., & Georghiou, S. (1979). SOLUTE-SOLVENT INTERACTION AND ITS EFFECT ON THE VIBRONIC AND VIBRATIONAL STRUCTURE OF PYRENE SPECTRA. Photochemistry and Photobiology, 30(3), 355-362. doi:10.1111/j.1751-1097.1979.tb07368.x es_ES
dc.description.references Dong, D. C., & Winnik, M. A. (1984). The Py scale of solvent polarities. Canadian Journal of Chemistry, 62(11), 2560-2565. doi:10.1139/v84-437 es_ES
dc.description.references Fletcher, K. A., Storey, I. A., Hendricks, A. E., Pandey, S., & Pandey, S. (2001). Behavior of the solvatochromic probes Reichardt’s dye, pyrene, dansylamide, Nile Red and 1-pyrenecarbaldehyde within the room-temperature ionic liquid bmimPF6. Green Chemistry, 3(5), 210-215. doi:10.1039/b103592b es_ES
dc.description.references Karpovich, D. S., & Blanchard, G. J. (1995). Relating the polarity-dependent fluorescence response of pyrene to vibronic coupling. Achieving a fundamental understanding of the py polarity scale. The Journal of Physical Chemistry, 99(12), 3951-3958. doi:10.1021/j100012a014 es_ES
dc.description.references Nakashima, K., Winnik, M. A., Dai, K. H., Kramer, E. J., & Washiyama, J. (1992). Fluorescent probe studies on the microstructure of polystyrene-poly(vinylpyridine) diblock copolymer film. Macromolecules, 25(25), 6866-6870. doi:10.1021/ma00051a022 es_ES
dc.description.references Kalyanasundaram, K., & Thomas, J. K. (1977). Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. Journal of the American Chemical Society, 99(7), 2039-2044. doi:10.1021/ja00449a004 es_ES
dc.description.references Sherrington, D. C. (1998). Preparation, structure and morphology of polymer supports. Chemical Communications, (21), 2275-2286. doi:10.1039/a803757d es_ES
dc.description.references Altava, B., Burguete, M. ., Garcı́a-Verdugo, E., Luis, S. ., Vicent, M. ., & Mayoral, J. . (2001). Supported chiral catalysts: the role of the polymeric network. Reactive and Functional Polymers, 48(1-3), 25-35. doi:10.1016/s1381-5148(01)00036-0 es_ES
dc.description.references Garcia-Bernabé, A., Compañ, V., Burguete, M. I., García-Verdugo, E., Karbass, N., Luis, S. V., & Riande, E. (2010). Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. The Journal of Physical Chemistry C, 114(15), 7030-7037. doi:10.1021/jp910535z es_ES
dc.description.references Tang, J., Radosz, M., & Shen, Y. (2008). Poly(ionic liquid)s as Optically Transparent Microwave-Absorbing Materials. Macromolecules, 41(2), 493-496. doi:10.1021/ma071762i es_ES
dc.description.references Huang, M.-M., & Weingärtner, H. (2008). Protic Ionic Liquids with Unusually High Dielectric Permittivities. ChemPhysChem, 9(15), 2172-2173. doi:10.1002/cphc.200800523 es_ES
dc.description.references Hunger, J., Stoppa, A., Schrödle, S., Hefter, G., & Buchner, R. (2009). Temperature Dependence of the Dielectric Properties and Dynamics of Ionic Liquids. ChemPhysChem, 10(4), 723-733. doi:10.1002/cphc.200800483 es_ES
dc.description.references Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse. Angewandte Chemie, 117(48), 8062-8083. doi:10.1002/ange.200500766 es_ES
dc.description.references Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872. doi:10.1002/anie.200500766 es_ES
dc.description.references Migowski, P., & Dupont, J. (2006). Catalytic Applications of Metal Nanoparticles in Imidazolium Ionic Liquids. Chemistry - A European Journal, 13(1), 32-39. doi:10.1002/chem.200601438 es_ES
dc.description.references Lozano, P., García-Verdugo, E., Karbass, N., Montague, K., De Diego, T., Burguete, M. I., & Luis, S. V. (2010). Supported Ionic Liquid-Like Phases (SILLPs) for enzymatic processes: Continuous KR and DKR in SILLP–scCO2 systems. Green Chemistry, 12(10), 1803. doi:10.1039/c0gc00076k es_ES
dc.description.references Burguete, M. I., García-Verdugo, E., Garcia-Villar, I., Gelat, F., Licence, P., Luis, S. V., & Sans, V. (2010). Pd catalysts immobilized onto gel-supported ionic liquid-like phases (g-SILLPs): A remarkable effect of the nature of the support. Journal of Catalysis, 269(1), 150-160. doi:10.1016/j.jcat.2009.11.002 es_ES
dc.description.references Jiang, Y., Guo, C., Xia, H., Mahmood, I., Liu, C., & Liu, H. (2009). Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification. Journal of Molecular Catalysis B: Enzymatic, 58(1-4), 103-109. doi:10.1016/j.molcatb.2008.12.001 es_ES
dc.description.references Nakashima, K., Kamiya, N., Koda, D., Maruyama, T., & Goto, M. (2009). Enzyme encapsulation in microparticles composed of polymerized ionic liquids for highly active and reusable biocatalysts. Organic & Biomolecular Chemistry, 7(11), 2353. doi:10.1039/b823064a es_ES
dc.description.references Van Rantwijk, F., & Sheldon, R. A. (2007). Biocatalysis in Ionic Liquids. Chemical Reviews, 107(6), 2757-2785. doi:10.1021/cr050946x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem