- -

Synthesis and Catalytic Properties of Hybrid Mesoporous Materials Assembled from Polyhedral and Bridged Silsesquioxane Monomers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis and Catalytic Properties of Hybrid Mesoporous Materials Assembled from Polyhedral and Bridged Silsesquioxane Monomers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Díaz Morales, Urbano Manuel es_ES
dc.contributor.author García Fernández, María Teresa es_ES
dc.contributor.author Velty, Alexandra Isabelle Lucienne es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2013-11-15T08:55:40Z
dc.date.issued 2012-07-09
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/33615
dc.description.abstract A family of hybrid mesoporous materials with high temperature stability was obtained by the suitable covalent combination of two types of siloxane precursors. Specifically, cubic T8 polyhedral oligomeric (POSS) and aryl bridged silsesquioxane monomers (1,4-bis(triethoxysilyl)benzene, BTEB) play the role of nanobuilders. An optimal molar ratio of the two precursors (5¿25 mol% of total silicon content from the BTEB disilane) generated a homogenous, highly accessible, and well-defined mesoporous material with hexagonal symmetry and narrow pore size distribution. Physicochemical, textural, and spectroscopic analysis corroborated the effective integration and preservation of the two different nanoprecursors, thereby confirming the framework of the mesoporous hybrid materials. A post-synthesis amination treatment allowed the effective incorporation of amino groups onto the aryl linkers, thereby obtaining a stable and recyclable basic catalyst for use in C C bond-formation processes. es_ES
dc.description.sponsorship The authors thank the Spanish MICINN (Consolider Ingenio 2010-MUL-TICAT (CSD2009-00050) and MAT2011-29020-C02-01) for their financial support. T. G. thanks the CSIC for the award of a JAE pre-doctoral fellowship. en_EN
dc.format.extent 14 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Amination es_ES
dc.subject Condensation reactions es_ES
dc.subject Mesoporous materials es_ES
dc.subject Silsesquioxanes es_ES
dc.subject Organic - inorganic hybrid composites es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis and Catalytic Properties of Hybrid Mesoporous Materials Assembled from Polyhedral and Bridged Silsesquioxane Monomers es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/chem.201200170
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2011-29020-C02-01/ES/CATALIZADORES HIBRIDOS MULTIFUNCIONALES BASADOS EN UNIDADES ESTRUCTURALES ORGANICAS-INORGANICAS UTILIZADOS EN REACCIONES CASCADA/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Díaz Morales, UM.; Garcia Fernandez, MT.; Velty, AIL.; Corma Canós, A. (2012). Synthesis and Catalytic Properties of Hybrid Mesoporous Materials Assembled from Polyhedral and Bridged Silsesquioxane Monomers. Chemistry - A European Journal. 18(28):8659-8672. doi:10.1002/chem.201200170 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/chem.201200170 es_ES
dc.description.upvformatpinicio 8659 es_ES
dc.description.upvformatpfin 8672 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 28 es_ES
dc.relation.senia 236227
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k es_ES
dc.description.references Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b es_ES
dc.description.references Corma, A., & Garcia, H. (2004). Supramolecular Host-Guest Systems in Zeolites Prepared by Ship-in-a-Bottle Synthesis. European Journal of Inorganic Chemistry, 2004(6), 1143-1164. doi:10.1002/ejic.200300831 es_ES
dc.description.references Corma, A., Iglesias, M., del Pino, C., & Sánchez, F. (1991). New rhodium complexes anchored on modified USY zeolites. A remarkable effect of the support on the enantioselectivity of catalytic hydrogenation of prochiral alkenes. J. Chem. Soc., Chem. Commun., (18), 1253-1255. doi:10.1039/c39910001253 es_ES
dc.description.references Ruiz-Hitzky, E., & Rojo, J. M. (1980). Intracrystalline grafting on layer silicic acids. Nature, 287(5777), 28-30. doi:10.1038/287028a0 es_ES
dc.description.references Alberti, G., Giontella, E., & Murcia-Mascarós, S. (1997). Mechanism of the Formation of Organic Derivatives of γ-Zirconium Phosphate by Topotactic Reactions with Phosphonic Acids in Water and Water−Acetone Media. Inorganic Chemistry, 36(13), 2844-2849. doi:10.1021/ic970048m es_ES
dc.description.references Srivastava, V., Gaubert, K., Pucheault, M., & Vaultier, M. (2009). Organic-Inorganic Hybrid Materials for Enantioselective Organocatalysis. ChemCatChem, 1(1), 94-98. doi:10.1002/cctc.200900035 es_ES
dc.description.references Yamamoto, K. (2003). Organic-Inorganic Hybrid Zeolites Containing Organic Frameworks. Science, 300(5618), 470-472. doi:10.1126/science.1081019 es_ES
dc.description.references Boronat, M., Climent, M. J., Corma, A., Iborra, S., Montón, R., & Sabater, M. J. (2010). Bifunctional Acid-Base Ionic Liquid Organocatalysts with a Controlled Distance Between Acid and Base Sites. Chemistry - A European Journal, 16(4), 1221-1231. doi:10.1002/chem.200901519 es_ES
dc.description.references Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., & Terasaki, O. (1999). Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks. Journal of the American Chemical Society, 121(41), 9611-9614. doi:10.1021/ja9916658 es_ES
dc.description.references Asefa, T., MacLachlan, M. J., Coombs, N., & Ozin, G. A. (1999). Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature, 402(6764), 867-871. doi:10.1038/47229 es_ES
dc.description.references Melde, B. J., Holland, B. T., Blanford, C. F., & Stein, A. (1999). Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chemistry of Materials, 11(11), 3302-3308. doi:10.1021/cm9903935 es_ES
dc.description.references Inagaki, S., Guan, S., Ohsuna, T., & Terasaki, O. (2002). An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 416(6878), 304-307. doi:10.1038/416304a es_ES
dc.description.references Díaz, U., García, T., Velty, A., & Corma, A. (2009). Hybrid organic–inorganic catalytic porous materials synthesized at neutral pH in absence of structural directing agents. Journal of Materials Chemistry, 19(33), 5970. doi:10.1039/b906821j es_ES
dc.description.references Corriu, R. J. P., Mehdi, A., Reyé, C., & Thieuleux, C. (2004). Direct Synthesis of Functionalized Mesoporous Silica by Non-Ionic Assembly Routes. Quantitative Chemical Transformations within the Materials Leading to Strongly Chelated Transition Metal Ions. Chemistry of Materials, 16(1), 159-166. doi:10.1021/cm034903d es_ES
dc.description.references Cerveau, G., Corriu, R. J. P., Dabiens, B., & Le Bideau, J. (2000). Synthesis of Stable Organo(bis-silanetriols): X-Ray Powder Structure of 1,4-Bis(trihydroxysilyl)benzene. Angewandte Chemie, 112(24), 4707-4711. doi:10.1002/1521-3757(20001215)112:24<4707::aid-ange4707>3.0.co;2-p es_ES
dc.description.references Cerveau, G., Corriu, R. J. P., Dabiens, B., & Le Bideau, J. (2000). Synthesis of Stable Organo(bis-silanetriols): X-Ray Powder Structure of 1,4-Bis(trihydroxysilyl)benzene. Angewandte Chemie International Edition, 39(24), 4533-4537. doi:10.1002/1521-3773(20001215)39:24<4533::aid-anie4533>3.0.co;2-8 es_ES
dc.description.references Shea, K. J., Loy, D. A., & Webster, O. (1992). Arylsilsesquioxane gels and related materials. New hybrids of organic and inorganic networks. Journal of the American Chemical Society, 114(17), 6700-6710. doi:10.1021/ja00043a014 es_ES
dc.description.references Alauzun, J., Mehdi, A., Reyé, C., & Corriu, R. J. P. (2006). Mesoporous Materials with an Acidic Framework and Basic Pores. A Successful Cohabitation. Journal of the American Chemical Society, 128(27), 8718-8719. doi:10.1021/ja0622960 es_ES
dc.description.references Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Mesoporöse organisch-anorganische Hybridmaterialien auf Silicabasis. Angewandte Chemie, 118(20), 3290-3328. doi:10.1002/ange.200503075 es_ES
dc.description.references Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075 es_ES
dc.description.references Hatton, B. D., Landskron, K., Hunks, W. J., Bennett, M. R., Shukaris, D., Perovic, D. D., & Ozin, G. A. (2006). Materials chemistry for low-k materials. Materials Today, 9(3), 22-31. doi:10.1016/s1369-7021(06)71387-6 es_ES
dc.description.references Budroni, G., & Corma, A. (2006). Gold–Organic–Inorganic High-Surface-Area Materials as Precursors of Highly Active Catalysts. Angewandte Chemie International Edition, 45(20), 3328-3331. doi:10.1002/anie.200600552 es_ES
dc.description.references Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z es_ES
dc.description.references Agaskar, P. A. (1991). New synthetic route to the hydridospherosiloxanes Oh-H8Si8O12 and D5h-H10Si10O15. Inorganic Chemistry, 30(13), 2707-2708. doi:10.1021/ic00013a002 es_ES
dc.description.references Jiang, J., Yu, J., & Corma, A. (2010). Zeolithe mit sehr großen Poren als Bindeglied zwischen mikro- und mesoporösen Strukturen. Angewandte Chemie, 122(18), 3186-3212. doi:10.1002/ange.200904016 es_ES
dc.description.references Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016 es_ES
dc.description.references Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652 es_ES
dc.description.references Sulaiman, S., Bhaskar, A., Zhang, J., Guda, R., Goodson, T., & Laine, R. M. (2008). Molecules with Perfect Cubic Symmetry as Nanobuilding Blocks for 3-D Assemblies. Elaboration of Octavinylsilsesquioxane. Unusual Luminescence Shifts May Indicate Extended Conjugation Involving the Silsesquioxane Core. Chemistry of Materials, 20(17), 5563-5573. doi:10.1021/cm801017e es_ES
dc.description.references Hagiwara, Y., Shimojima, A., & Kuroda, K. (2008). Alkoxysilylated-Derivatives of Double-Four-Ring Silicate as Novel Building Blocks of Silica-Based Materials†. Chemistry of Materials, 20(3), 1147-1153. doi:10.1021/cm0716194 es_ES
dc.description.references Shimojima, A., Goto, R., Atsumi, N., & Kuroda, K. (2008). Self-Assembly of Alkyl-Substituted Cubic Siloxane Cages into Ordered Hybrid Materials. Chemistry - A European Journal, 14(28), 8500-8506. doi:10.1002/chem.200801106 es_ES
dc.description.references Zhang, L., Abbenhuis, H. C. L., Yang, Q., Wang, Y.-M., Magusin, P. C. M. M., Mezari, B., … Li, C. (2007). Mesoporous Organic–Inorganic Hybrid Materials Built Using Polyhedral Oligomeric Silsesquioxane Blocks. Angewandte Chemie, 119(26), 5091-5094. doi:10.1002/ange.200700640 es_ES
dc.description.references Zhang, L., Abbenhuis, H. C. L., Yang, Q., Wang, Y.-M., Magusin, P. C. M. M., Mezari, B., … Li, C. (2007). Mesoporous Organic–Inorganic Hybrid Materials Built Using Polyhedral Oligomeric Silsesquioxane Blocks. Angewandte Chemie International Edition, 46(26), 5003-5006. doi:10.1002/anie.200700640 es_ES
dc.description.references Zhang, L., Yang, Q., Yang, H., Liu, J., Xin, H., Mezari, B., … Li, C. (2008). Super-microporous organosilicas synthesized from well-defined nanobuilding units. J. Mater. Chem., 18(4), 450-457. doi:10.1039/b715031h es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Bion, N., Ferreira, P., Valente, A., Gonçalves, I. S., & Rocha, J. (2003). Ordered benzene–silica hybrids with molecular-scale periodicity in the walls and different mesopore sizes. J. Mater. Chem., 13(8), 1910-1913. doi:10.1039/b304430k es_ES
dc.description.references Fujita, S., & Inagaki, S. (2008). Self-Organization of Organosilica Solids with Molecular-Scale and Mesoscale Periodicities†. Chemistry of Materials, 20(3), 891-908. doi:10.1021/cm702271v es_ES
dc.description.references Jaroniec, M., & Solovyov, L. A. (2006). Improvement of the Kruk−Jaroniec−Sayari Method for Pore Size Analysis of Ordered Silicas with Cylindrical Mesopores. Langmuir, 22(16), 6757-6760. doi:10.1021/la0609571 es_ES
dc.description.references Kapoor, M. P., & Inagaki, S. (2006). Highly Ordered Mesoporous Organosilica Hybrid Materials. Bulletin of the Chemical Society of Japan, 79(10), 1463-1475. doi:10.1246/bcsj.79.1463 es_ES
dc.description.references Sauer, J., Ugliengo, P., Garrone, E., & Saunders, V. R. (1994). Theoretical Study of van der Waals Complexes at Surface Sites in Comparison with the Experiment. Chemical Reviews, 94(7), 2095-2160. doi:10.1021/cr00031a014 es_ES
dc.description.references De Man, A. J. M., & van Santen, R. A. (1992). The relation between zeolite framework structure and vibrational spectra. Zeolites, 12(3), 269-279. doi:10.1016/s0144-2449(05)80295-7 es_ES
dc.description.references Baertsch, M., Bornhauser, P., Calzaferri, G., & Imhof, R. (1994). H8Si8O12: A model for the vibrational structure of zeolite A. The Journal of Physical Chemistry, 98(11), 2817-2831. doi:10.1021/j100062a016 es_ES
dc.description.references Marcolli, C., Lainé,, P., Bühler, R., Calzaferri, G., & Tomkinson, J. (1997). Vibrations of H8Si8O12, D8Si8O12, and H10Si10O15As Determined by INS, IR, and Raman Experiments†. The Journal of Physical Chemistry B, 101(7), 1171-1179. doi:10.1021/jp962742d es_ES
dc.description.references Villaescusa, L. A., Márquez, F. M., Zicovich-Wilson, C. M., & Camblor, M. A. (2002). Infrared Investigation of Fluoride Occluded in Double Four-Member Rings in Zeolites. The Journal of Physical Chemistry B, 106(10), 2796-2800. doi:10.1021/jp013190o es_ES
dc.description.references Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909 es_ES
dc.description.references Huang, Y., & Jiang, Z. (1997). Vibrational spectra of completely siliceous zeolite A. Microporous Materials, 12(4-6), 341-345. doi:10.1016/s0927-6513(97)00082-5 es_ES
dc.description.references Mozgawa, W., Jastrzębski, W., & Handke, M. (2005). Vibrational spectra of D4R and D6R structural units. Journal of Molecular Structure, 744-747, 663-670. doi:10.1016/j.molstruc.2004.12.051 es_ES
dc.description.references Díaz-Morales, U., Bellussi, G., Carati, A., Millini, R., Parker, W. O., & Rizzo, C. (2006). Ethane–silica hybrid material with ordered hexagonal mesoporous structure. Microporous and Mesoporous Materials, 87(3), 185-191. doi:10.1016/j.micromeso.2005.08.004 es_ES
dc.description.references Wu, C.-G., & Bein, T. (1996). Microwave synthesis of molecular sieve MCM-41. Chemical Communications, (8), 925. doi:10.1039/cc9960000925 es_ES
dc.description.references Loy, D. A., Beach, J. V., Baugher, B. M., Assink, R. A., Shea, K. J., Tran, J., & Small, J. H. (1999). Dialkylene Carbonate-Bridged Polysilsesquioxanes. Hybrid Organic−Inorganic Sol−Gels with a Thermally Labile Bridging Group. Chemistry of Materials, 11(11), 3333-3341. doi:10.1021/cm990405m es_ES
dc.description.references Rodriguez, I., Iborra, S., Rey, F., & Corma, A. (2000). Heterogeneized Brönsted base catalysts for fine chemicals production: grafted quaternary organic ammonium hydroxides as catalyst for the production of chromenes and coumarins. Applied Catalysis A: General, 194-195, 241-252. doi:10.1016/s0926-860x(99)00371-3 es_ES
dc.description.references CLIMENT, M. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316-326. doi:10.1016/j.jcat.2004.04.027 es_ES
dc.description.references Prout, F. S., Beaucaire, V. D., Dyrkacz, G. R., Koppes, W. M., Kuznicki, R. E., Marlewski, T. A., … Puda, J. M. (1973). Konevenagel Reaction. Kinetic study of the reaction of (+)-3-methyl-cyclohexanone with malononitrile. The Journal of Organic Chemistry, 38(8), 1512-1517. doi:10.1021/jo00948a015 es_ES
dc.description.references Guyot, J., & Kergomard, A. (1983). Cinétique et mécanisme de la réaction de knoevenagel dans le benzène-2. Tetrahedron, 39(7), 1167-1179. doi:10.1016/s0040-4020(01)91880-0 es_ES
dc.description.references Luzzio, F. A. (2001). The Henry reaction: recent examples. Tetrahedron, 57(6), 915-945. doi:10.1016/s0040-4020(00)00965-0 es_ES
dc.description.references Morao, I., & Cossío, F. P. (1997). Dendritic Catalysts for the Nitroaldol (Henry) Reaction. Tetrahedron Letters, 38(36), 6461-6464. doi:10.1016/s0040-4039(97)01477-9 es_ES
dc.description.references Motokura, K., Tomita, M., Tada, M., & Iwasawa, Y. (2008). Acid-Base Bifunctional Catalysis of Silica-Alumina-Supported Organic Amines for Carbon-Carbon Bond-Forming Reactions. Chemistry - A European Journal, 14(13), 4017-4027. doi:10.1002/chem.200702048 es_ES
dc.description.references Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. doi:10.1351/pac198557040603 es_ES
dc.description.references Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem