Mostrar el registro sencillo del ítem
dc.contributor.author | Arcis-Castillo, Zulema | es_ES |
dc.contributor.author | Muñoz Roca, María del Carmen | es_ES |
dc.contributor.author | Molnár, Gábor | es_ES |
dc.contributor.author | Bousseksou, Azzedine | es_ES |
dc.contributor.author | Real, José Antonio | es_ES |
dc.date.accessioned | 2013-11-19T16:03:22Z | |
dc.date.issued | 2013-05-17 | |
dc.identifier.issn | 0947-6539 | |
dc.identifier.uri | http://hdl.handle.net/10251/33766 | |
dc.description.abstract | Two new heterobimetallic porous coordination polymers with the formula [Fe(TPT)2/3{MI(CN)2}2]¿nSolv (TPT=[(2,4,6-tris(4-pyridyl)-1,3,5-triazine]; MI=Ag (nSolv=0, 1¿MeOH, 2¿CH2Cl2), Au (nSolv=0, 2¿CH2Cl2)) have been synthesized and their crystal structures were determined at 120¿K and 293¿K by single-crystal X-ray analysis. These structures crystallized in the trigonal R-3m space group. The FeII ion resides at an inversion centre that defines a [FeN6] coordination core. Four dicyanometallate groups coordinate at the equatorial positions, whilst the axial positions are occupied by the TPT ligand. Each TPT ligand is centred in a ternary axis and bridges three crystallographically equivalent FeII ions, whilst each dicyanometallate group bridges two crystallographically equivalent FeII ions that define a 3D network with the topology of NbO. There are two such networks, which interpenetrate each other, thereby giving rise to large spaces in which very labile solvent molecules are included (CH2Cl2 or MeOH). Crystallographic analysis confirmed the reversible structural changes that were associated with the occurrence of spin-crossover behaviour at the FeII ions, the most significant structural variation being the change in unit-cell volume (about 59¿Å3 per FeII ion). The spin-crossover behaviour has been monitored by means of thermal dependence of the magnetic properties, Mössbauer spectroscopy, and calorimetry. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN, presently the Ministerio de Economia y Competitividad) and FEDER funds (CTQ2010-18414), the Generalitat Valenciana through projects PROMETEO/2012/049 and ACOMP2012/233, and the French ANR Chemoswitch project. Z.A.-C. thanks the Spanish Ministerio de Educacion, Cultura y Deporte for a doctoral (FPU) grant. | en_EN |
dc.format.extent | 11 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Coordination polymers | es_ES |
dc.subject | Iron | es_ES |
dc.subject | Porosity | es_ES |
dc.subject | Self-assembly | es_ES |
dc.subject | Spin crossover | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | [Fe(TPT)2/3{MI(CN)2}2]·nSolv (MI=Ag, Au): new bimetallic porous coordination polymers with spin-crossover properties | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/chem.201203559 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2010-18414/ES/MATERIALES MULTIPROPIEDAD BASADOS EN EL FENOMENO "SPIN CROSSOVER": MEMORIAS Y SENSORES MOLECULARES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F233/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F049/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Arcis-Castillo, Z.; Muñoz Roca, MDC.; Molnár, G.; Bousseksou, A.; Real, JA. (2013). [Fe(TPT)2/3{MI(CN)2}2]·nSolv (MI=Ag, Au): new bimetallic porous coordination polymers with spin-crossover properties. Chemistry - A European Journal. 19(21):6851-6861. https://doi.org/10.1002/chem.201203559 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://onlinelibrary.wiley.com/doi/10.1002/chem.201203559/suppinfo | es_ES |
dc.description.upvformatpinicio | 6851 | es_ES |
dc.description.upvformatpfin | 6861 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 21 | es_ES |
dc.relation.senia | 246060 | |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.description.references | Das, M. C., Xiang, S., Zhang, Z., & Chen, B. (2011). Funktionelle Gemischtmetall-organische Gerüste mit Metalloliganden. Angewandte Chemie, 123(45), 10696-10707. doi:10.1002/ange.201101534 | es_ES |
dc.description.references | Das, M. C., Xiang, S., Zhang, Z., & Chen, B. (2011). Functional Mixed Metal-Organic Frameworks with Metalloligands. Angewandte Chemie International Edition, 50(45), 10510-10520. doi:10.1002/anie.201101534 | es_ES |
dc.description.references | Kitagawa, S., Kitaura, R., & Noro, S. (2004). Funktionale poröse Koordinationspolymere. Angewandte Chemie, 116(18), 2388-2430. doi:10.1002/ange.200300610 | es_ES |
dc.description.references | Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 | es_ES |
dc.description.references | KITAGAWA, S., & MATSUDA, R. (2007). Chemistry of coordination space of porous coordination polymers. Coordination Chemistry Reviews, 251(21-24), 2490-2509. doi:10.1016/j.ccr.2007.07.009 | es_ES |
dc.description.references | Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b | es_ES |
dc.description.references | Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284. doi:10.1039/b804680h | es_ES |
dc.description.references | Rocha, J., Carlos, L. D., Paz, F. A. A., & Ananias, D. (2011). Luminescent multifunctional lanthanides-based metal–organic frameworks. Chem. Soc. Rev., 40(2), 926-940. doi:10.1039/c0cs00130a | es_ES |
dc.description.references | Wang, C., & Lin, W. (2011). Diffusion-Controlled Luminescence Quenching in Metal−Organic Frameworks. Journal of the American Chemical Society, 133(12), 4232-4235. doi:10.1021/ja111197d | es_ES |
dc.description.references | Liu, D., Huxford, R. C., & Lin, W. (2011). Phosphorescent Nanoscale Coordination Polymers as Contrast Agents for Optical Imaging. Angewandte Chemie, 123(16), 3780-3784. doi:10.1002/ange.201008277 | es_ES |
dc.description.references | Liu, D., Huxford, R. C., & Lin, W. (2011). Phosphorescent Nanoscale Coordination Polymers as Contrast Agents for Optical Imaging. Angewandte Chemie International Edition, 50(16), 3696-3700. doi:10.1002/anie.201008277 | es_ES |
dc.description.references | Stylianou, K. C., Heck, R., Chong, S. Y., Bacsa, J., Jones, J. T. A., Khimyak, Y. Z., … Rosseinsky, M. J. (2010). A Guest-Responsive Fluorescent 3D Microporous Metal−Organic Framework Derived from a Long-Lifetime Pyrene Core. Journal of the American Chemical Society, 132(12), 4119-4130. doi:10.1021/ja906041f | es_ES |
dc.description.references | Xie, Z., Ma, L., deKrafft, K. E., Jin, A., & Lin, W. (2010). Porous Phosphorescent Coordination Polymers for Oxygen Sensing. Journal of the American Chemical Society, 132(3), 922-923. doi:10.1021/ja909629f | es_ES |
dc.description.references | Maspoch, D., Ruiz-Molina, D., & Veciana, J. (2007). Old materials with new tricks: multifunctional open-framework materials. Chemical Society Reviews, 36(5), 770. doi:10.1039/b501600m | es_ES |
dc.description.references | Dechambenoit, P., & Long, J. R. (2011). Microporous magnets. Chemical Society Reviews, 40(6), 3249. doi:10.1039/c0cs00167h | es_ES |
dc.description.references | Avendano, C., Zhang, Z., Ota, A., Zhao, H., & Dunbar, K. R. (2011). Dramatically Different Conductivity Properties of Metal-Organic Framework Polymorphs of Tl(TCNQ): An Unexpected Room-Temperature Crystal-to-Crystal Phase Transition. Angewandte Chemie, 123(29), 6673-6677. doi:10.1002/ange.201100372 | es_ES |
dc.description.references | Avendano, C., Zhang, Z., Ota, A., Zhao, H., & Dunbar, K. R. (2011). Dramatically Different Conductivity Properties of Metal-Organic Framework Polymorphs of Tl(TCNQ): An Unexpected Room-Temperature Crystal-to-Crystal Phase Transition. Angewandte Chemie International Edition, 50(29), 6543-6547. doi:10.1002/anie.201100372 | es_ES |
dc.description.references | Shimomura, S., & Kitagawa, S. (2011). Soft porous crystal meets TCNQ: charge transfer-type porous coordination polymers. Journal of Materials Chemistry, 21(15), 5537. doi:10.1039/c1jm10208g | es_ES |
dc.description.references | Shimomura, S., Yanai, N., Matsuda, R., & Kitagawa, S. (2011). Impact of Metal-Ion Dependence on the Porous and Electronic Properties of TCNQ-Dianion-Based Porous Coordination Polymers. Inorganic Chemistry, 50(1), 172-177. doi:10.1021/ic1015498 | es_ES |
dc.description.references | Shigematsu, A., Yamada, T., & Kitagawa, H. (2011). Wide Control of Proton Conductivity in Porous Coordination Polymers. Journal of the American Chemical Society, 133(7), 2034-2036. doi:10.1021/ja109810w | es_ES |
dc.description.references | Bureekaew, S., Horike, S., Higuchi, M., Mizuno, M., Kawamura, T., Tanaka, D., … Kitagawa, S. (2009). One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nature Materials, 8(10), 831-836. doi:10.1038/nmat2526 | es_ES |
dc.description.references | Goodwin, H. A. (1976). Spin Transitions in six-coordinate iron(II) complexes. Coordination Chemistry Reviews, 18(3), 293-325. doi:10.1016/s0010-8545(00)80430-0 | es_ES |
dc.description.references | Gütlich, P. (s. f.). Spin crossover in iron(II)-complexes. Metal Complexes, 83-195. doi:10.1007/bfb0111269 | es_ES |
dc.description.references | Konig, E., Ritter, G., & Kulshreshtha, S. K. (1985). The nature of spin-state transitions in solid complexes of iron(II) and the interpretation of some associated phenomena. Chemical Reviews, 85(3), 219-234. doi:10.1021/cr00067a003 | es_ES |
dc.description.references | Hauser, A. (1995). Intersystem Crossing in Iron(II) Coordination Compounds: A Model Process Between Classical and Quantum Mechanical Behaviour. Comments on Inorganic Chemistry, 17(1), 17-40. doi:10.1080/02603599508035780 | es_ES |
dc.description.references | König, E. (1991). Nature and dynamics of the spin-state interconversion in metal complexes. Structure and Bonding, 51-152. doi:10.1007/3-540-53499-7_2 | es_ES |
dc.description.references | Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermisch und optisch schaltbare Eisen(II)-Komplexe. Angewandte Chemie, 106(20), 2109-2141. doi:10.1002/ange.19941062006 | es_ES |
dc.description.references | Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermal and Optical Switching of Iron(II) Complexes. Angewandte Chemie International Edition in English, 33(20), 2024-2054. doi:10.1002/anie.199420241 | es_ES |
dc.description.references | Sato, O. (2003). Optically Switchable Molecular Solids: Photoinduced Spin-Crossover, Photochromism, and Photoinduced Magnetization. Accounts of Chemical Research, 36(9), 692-700. doi:10.1021/ar020242z | es_ES |
dc.description.references | Real, J. A., Gaspar, A. B., Niel, V., & Muñoz, M. C. (2003). Communication between iron(II) building blocks in cooperative spin transition phenomena. Coordination Chemistry Reviews, 236(1-2), 121-141. doi:10.1016/s0010-8545(02)00220-5 | es_ES |
dc.description.references | Top. Curr. Chem. 2004 233-235 | es_ES |
dc.description.references | Real, J. A., Gaspar, A. B., & Muñoz, M. C. (2005). Thermal, pressure and light switchable spin-crossover materials. Dalton Transactions, (12), 2062. doi:10.1039/b501491c | es_ES |
dc.description.references | Halcrow, M. A. (2007). The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands. Polyhedron, 26(14), 3523-3576. doi:10.1016/j.poly.2007.03.033 | es_ES |
dc.description.references | NIHEI, M., SHIGA, T., MAEDA, Y., & OSHIO, H. (2007). Spin crossover iron(III) complexes. Coordination Chemistry Reviews, 251(21-24), 2606-2621. doi:10.1016/j.ccr.2007.08.007 | es_ES |
dc.description.references | Gamez, P., Costa, J. S., Quesada, M., & Aromí, G. (2009). Iron Spin-Crossover compounds: from fundamental studies to practical applications. Dalton Transactions, (38), 7845. doi:10.1039/b908208e | es_ES |
dc.description.references | Halcrow, M. A. (2009). Iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridines—A versatile system for spin-crossover research. Coordination Chemistry Reviews, 253(21-22), 2493-2514. doi:10.1016/j.ccr.2009.07.009 | es_ES |
dc.description.references | Olguín, J., & Brooker, S. (2011). Spin crossover active iron(II) complexes of selected pyrazole-pyridine/pyrazine ligands. Coordination Chemistry Reviews, 255(1-2), 203-240. doi:10.1016/j.ccr.2010.08.002 | es_ES |
dc.description.references | Bousseksou, A., Molnár, G., Salmon, L., & Nicolazzi, W. (2011). Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews, 40(6), 3313. doi:10.1039/c1cs15042a | es_ES |
dc.description.references | Real, J. A., Andres, E., Munoz, M. C., Julve, M., Granier, T., Bousseksou, A., & Varret, F. (1995). Spin Crossover in a Catenane Supramolecular System. Science, 268(5208), 265-267. doi:10.1126/science.268.5208.265 | es_ES |
dc.description.references | Halder, G. J. (2002). Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material. Science, 298(5599), 1762-1765. doi:10.1126/science.1075948 | es_ES |
dc.description.references | Neville, S. M., Moubaraki, B., Murray, K. S., & Kepert, C. J. (2007). A Thermal Spin Transition in a Nanoporous Iron(II) Coordination Framework Material. Angewandte Chemie, 119(12), 2105-2108. doi:10.1002/ange.200603977 | es_ES |
dc.description.references | Neville, S. M., Moubaraki, B., Murray, K. S., & Kepert, C. J. (2007). A Thermal Spin Transition in a Nanoporous Iron(II) Coordination Framework Material. Angewandte Chemie International Edition, 46(12), 2059-2062. doi:10.1002/anie.200603977 | es_ES |
dc.description.references | Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Moubaraki, B., Murray, K. S., & Kepert, C. J. (2009). Guest Tunable Structure and Spin Crossover Properties in a Nanoporous Coordination Framework Material. Journal of the American Chemical Society, 131(34), 12106-12108. doi:10.1021/ja905360g | es_ES |
dc.description.references | Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., … Kepert, C. J. (2008). Single-Crystal to Single-Crystal Structural Transformation and Photomagnetic Properties of a Porous Iron(II) Spin-Crossover Framework. Journal of the American Chemical Society, 130(9), 2869-2876. doi:10.1021/ja077958f | es_ES |
dc.description.references | Halder, G. J., Chapman, K. W., Neville, S. M., Moubaraki, B., Murray, K. S., Létard, J.-F., & Kepert, C. J. (2008). Elucidating the Mechanism of a Two-Step Spin Transition in a Nanoporous Metal−Organic Framework. Journal of the American Chemical Society, 130(51), 17552-17562. doi:10.1021/ja8068038 | es_ES |
dc.description.references | Hofmann, K. A., & Küspert, F. (1897). Verbindungen von Kohlenwasserstoffen mit Metallsalzen. Zeitschrift für anorganische Chemie, 15(1), 204-207. doi:10.1002/zaac.18970150118 | es_ES |
dc.description.references | POWELL, H. M., & RAYNER, J. H. (1949). Clathrate Compound Formed by Benzene with an Ammonia–Nickel Cyanide Complex. Nature, 163(4145), 566-567. doi:10.1038/163566a0 | es_ES |
dc.description.references | Iwamoto, T. (1996). Past, present and future of the clathrate inclusion compounds built of cyanometallate hosts. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 24(1-2), 61-132. doi:10.1007/bf01053426 | es_ES |
dc.description.references | Nishikiori, S., Yoshikawa, H., Sano, Y., & Iwamoto, T. (2005). Inorganic−Organic Hybrid Molecular Architectures of Cyanometalate Host and Organic Guest Systems: Specific Behavior of the Guests. Accounts of Chemical Research, 38(4), 227-234. doi:10.1021/ar0401707 | es_ES |
dc.description.references | Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B., & Real, J. A. (2001). Cooperative Spin Crossover Behavior in Cyanide-Bridged Fe(II)−M(II) Bimetallic 3D Hofmann-like Networks (M = Ni, Pd, and Pt). Inorganic Chemistry, 40(16), 3838-3839. doi:10.1021/ic010259y | es_ES |
dc.description.references | Rodríguez-Velamazán, J. A., González, M. A., Real, J. A., Castro, M., Muñoz, M. C., Gaspar, A. B., … Kitagawa, S. (2012). A Switchable Molecular Rotator: Neutron Spectroscopy Study on a Polymeric Spin-Crossover Compound. Journal of the American Chemical Society, 134(11), 5083-5089. doi:10.1021/ja206228n | es_ES |
dc.description.references | Ohba, M., Yoneda, K., Agustí, G., Muñoz, M.  Carme., Gaspar, A., Real, J., … Kitagawa, S. (2009). Bidirectional Chemo‐Switching of Spin State in a Microporous Framework. Angewandte Chemie, 121(26), 4861-4865. doi:10.1002/ange.200806039 | es_ES |
dc.description.references | Ohba, M., Yoneda, K., Agustí, G., Muñoz, M. C., Gaspar, A. B., Real, J. A., … Kitagawa, S. (2009). Bidirectional Chemo-Switching of Spin State in a Microporous Framework. Angewandte Chemie International Edition, 48(26), 4767-4771. doi:10.1002/anie.200806039 | es_ES |
dc.description.references | Boldog, I., Gaspar, A. B., Martínez, V., Pardo-Ibañez, P., Ksenofontov, V., Bhattacharjee, A., … Real, J. A. (2008). Spin-Crossover Nanocrystals with Magnetic, Optical, and Structural Bistability Near Room Temperature. Angewandte Chemie, 120(34), 6533-6537. doi:10.1002/ange.200801673 | es_ES |
dc.description.references | Boldog, I., Gaspar, A. B., Martínez, V., Pardo-Ibañez, P., Ksenofontov, V., Bhattacharjee, A., … Real, J. A. (2008). Spin-Crossover Nanocrystals with Magnetic, Optical, and Structural Bistability Near Room Temperature. Angewandte Chemie International Edition, 47(34), 6433-6437. doi:10.1002/anie.200801673 | es_ES |
dc.description.references | Cobo, S., Molnár, G., Real, J. A., & Bousseksou, A. (2006). Multilayer Sequential Assembly of Thin Films That Display Room-Temperature Spin Crossover with Hysteresis. Angewandte Chemie, 118(35), 5918-5921. doi:10.1002/ange.200601885 | es_ES |
dc.description.references | Cobo, S., Molnár, G., Real, J. A., & Bousseksou, A. (2006). Multilayer Sequential Assembly of Thin Films That Display Room-Temperature Spin Crossover with Hysteresis. Angewandte Chemie International Edition, 45(35), 5786-5789. doi:10.1002/anie.200601885 | es_ES |
dc.description.references | Molnár, G., Cobo, S., Real, J. A., Carcenac, F., Daran, E., Vieu, C., & Bousseksou, A. (2007). A Combined Top-Down/Bottom-Up Approach for the Nanoscale Patterning of Spin-Crossover Coordination Polymers. Advanced Materials, 19(16), 2163-2167. doi:10.1002/adma.200700448 | es_ES |
dc.description.references | Southon, P. D., Liu, L., Fellows, E. A., Price, D. J., Halder, G. J., Chapman, K. W., … Kepert, C. J. (2009). Dynamic Interplay between Spin-Crossover and Host−Guest Function in a Nanoporous Metal−Organic Framework Material. Journal of the American Chemical Society, 131(31), 10998-11009. doi:10.1021/ja902187d | es_ES |
dc.description.references | Agustí, G., Ohtani, R., Yoneda, K., Gaspar, A. B., Ohba, M., Sánchez-Royo, J. F., … Real, J. A. (2009). Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer. Angewandte Chemie, 121(47), 9106-9109. doi:10.1002/ange.200904379 | es_ES |
dc.description.references | Agustí, G., Ohtani, R., Yoneda, K., Gaspar, A. B., Ohba, M., Sánchez-Royo, J. F., … Real, J. A. (2009). Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer. Angewandte Chemie International Edition, 48(47), 8944-8947. doi:10.1002/anie.200904379 | es_ES |
dc.description.references | Ohtani, R., Yoneda, K., Furukawa, S., Horike, N., Kitagawa, S., Gaspar, A. B., … Ohba, M. (2011). Precise Control and Consecutive Modulation of Spin Transition Temperature Using Chemical Migration in Porous Coordination Polymers. Journal of the American Chemical Society, 133(22), 8600-8605. doi:10.1021/ja111674c | es_ES |
dc.description.references | Muñoz, M. C., & Real, J. A. (2011). Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers. Coordination Chemistry Reviews, 255(17-18), 2068-2093. doi:10.1016/j.ccr.2011.02.004 | es_ES |
dc.description.references | Batten, S. R., Hoskins, B. F., & Robson, R. (1995). Two Interpenetrating 3D Networks Which Generate Spacious Sealed-Off Compartments Enclosing of the Order of 20 Solvent Molecules in the Structures of Zn(CN)(NO3)(tpt)2/3.cntdot.solv (tpt = 2,4,6-tri(4-pyridyl)-1,3,5-triazine, solv = .apprx.3/4C2H2Cl4.cntdot.3/4CH3OH or .apprx.3/2CHCl3.cntdot.1/3CH3OH). Journal of the American Chemical Society, 117(19), 5385-5386. doi:10.1021/ja00124a032 | es_ES |
dc.description.references | Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F., & Robson, R. (1999). Ni(tpt)(NO3)2 – ein dreidimensionales, selbstverkettetes Netz mit der ungewöhnlichen (12,3)-Topologie. Angewandte Chemie, 111(10), 1538-1540. doi:10.1002/(sici)1521-3757(19990517)111:10<1538::aid-ange1538>3.0.co;2-2 | es_ES |
dc.description.references | Abrahams, B. F., Batten, S. R., Hamit, H., Hoskins, B. F., & Robson, R. (1996). A Cubic(3,4)-Connected Net with Large Cavities in Solvated[Cu3(tpt)4](ClO4)3(tpt= 2,4,6-Tri(4-pyridyl)-1,3,5-triazine). Angewandte Chemie International Edition in English, 35(15), 1690-1692. doi:10.1002/anie.199616901 | es_ES |
dc.description.references | Abrahams, B. F., Batten, S. R., Hamit, H., Hoskins, B. F., & Robson, R. (1996). A wellsian ‘three-dimensional’ racemate: eight interpenetrating, enantiomorphic (10,3)-a nets, four right- and four left-handed. Chem. Commun., (11), 1313-1314. doi:10.1039/cc9960001313 | es_ES |
dc.description.references | Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F., & Robson, R. (1999). Ni(tpt)(NO3)2—A Three-Dimensional Network with the Exceptional (12,3) Topology: A Self-Entangled Single Net. Angewandte Chemie International Edition, 38(10), 1475-1477. doi:10.1002/(sici)1521-3773(19990517)38:10<1475::aid-anie1475>3.0.co;2-3 | es_ES |
dc.description.references | Batten, S. R., Hoskins, B. F., Robson, R., Moubaraki, B., & Murray, K. S. (2000). An alternative to interpenetration whereby nets with large windows may achieve satisfactory space filling. Chemical Communications, (13), 1095-1096. doi:10.1039/b002193h | es_ES |
dc.description.references | Biradha, K., & Fujita, M. (2002). Angewandte Chemie, 114(18), 3542-3545. doi:10.1002/1521-3757(20020916)114:18<3542::aid-ange3542>3.0.co;2-p | es_ES |
dc.description.references | Biradha, K., & Fujita, M. (2002). A Springlike 3D-Coordination Network That Shrinks or Swells in a Crystal-to-Crystal Manner upon Guest Removal or Readsorption. Angewandte Chemie International Edition, 41(18), 3392-3395. doi:10.1002/1521-3773(20020916)41:18<3392::aid-anie3392>3.0.co;2-v | es_ES |
dc.description.references | Ohmori, O., Kawano, M., & Fujita, M. (2004). Crystal-to-Crystal Guest Exchange of Large Organic Molecules within a 3D Coordination Network. Journal of the American Chemical Society, 126(50), 16292-16293. doi:10.1021/ja046478a | es_ES |
dc.description.references | Dybtsev, D. N., Chun, H., & Kim, K. (2004). Three-dimensional metal–organic framework with (3,4)-connected net, synthesized from an ionic liquid medium. Chem. Commun., (14), 1594-1595. doi:10.1039/b403001j | es_ES |
dc.description.references | Inokuma, Y., Arai, T., & Fujita, M. (2010). Networked molecular cages as crystalline sponges for fullerenes and other guests. Nature Chemistry, 2(9), 780-783. doi:10.1038/nchem.742 | es_ES |
dc.description.references | Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930 | es_ES |
dc.description.references | Jansen, M. (1987). Homoatomare d10-d10-Wechselwirkungen — Auswirkungen auf Struktur- und Stoffeigenschaften. Angewandte Chemie, 99(11), 1136-1149. doi:10.1002/ange.19870991106 | es_ES |
dc.description.references | Jansen, M. (1987). Homoatomic d10–d10 Interactions: Their Effects on Structure and Chemical and Physical Properties. Angewandte Chemie International Edition in English, 26(11), 1098-1110. doi:10.1002/anie.198710981 | es_ES |
dc.description.references | Slichter, C. P., & Drickamer, H. G. (1972). Pressure‐Induced Electronic Changes in Compounds of Iron. The Journal of Chemical Physics, 56(5), 2142-2160. doi:10.1063/1.1677511 | es_ES |
dc.description.references | Martin, J.-P., Zarembowitch, J., Bousseksou, A., Dworkin, A., Haasnoot, J. G., & Varret, F. (1994). Solid State Effects on Spin Transitions: Magnetic, Calorimetric, and Moessbauer-Effect Properties of [FexCo1-x(4,4’-bis-1,2,4-triazole)2(NCS)2].cntdot.H2O Mixed-Crystal Compounds. Inorganic Chemistry, 33(26), 6325-6333. doi:10.1021/ic00104a049 | es_ES |
dc.description.references | Sorai, M., Nakano, M., & Miyazaki, Y. (2006). Calorimetric Investigation of Phase Transitions Occurring in Molecule-Based Magnets†. Chemical Reviews, 106(3), 976-1031. doi:10.1021/cr960049g | es_ES |
dc.description.references | Rodríguez-Velamazán, J. A., Castro, M., Palacios, E., Burriel, R., Kitazawa, T., & Kawasaki, T. (2007). A Two-Step Spin Transition with a Disordered Intermediate State in a New Two-Dimensional Coordination Polymer. The Journal of Physical Chemistry B, 111(6), 1256-1261. doi:10.1021/jp066010p | es_ES |
dc.description.references | Kosone, T., Kachi-Terajima, C., Kanadani, C., Saito, T., & Kitazawa, T. (2008). Isotope Effect on Spin-crossover Transition in a New Two-dimensional Coordination Polymer [FeII(C5H5N)2][AuI(CN)2]2, [FeII(C5D5N)2][AuI(CN)2]2, and [FeII(C5H515N)2][AuI(CN)2]2. Chemistry Letters, 37(7), 754-755. doi:10.1246/cl.2008.754 | es_ES |
dc.description.references | Muñoz, M. C., Gaspar, A. B., Galet, A., & Real, J. A. (2007). Spin-Crossover Behavior in Cyanide-Bridged Iron(II)−Silver(I) Bimetallic 2D Hofmann-like Metal−Organic Frameworks. Inorganic Chemistry, 46(20), 8182-8192. doi:10.1021/ic700607x | es_ES |
dc.description.references | Agustí, G., Muñoz, M. C., Gaspar, A. B., & Real, J. A. (2008). Spin-Crossover Behavior in Cyanide-bridged Iron(II)−Gold(I) Bimetallic 2D Hofmann-like Metal−Organic Frameworks§. Inorganic Chemistry, 47(7), 2552-2561. doi:10.1021/ic701865k | es_ES |
dc.description.references | Rodríguez-Velamazán, J. A., Carbonera, C., Castro, M., Palacios, E., Kitazawa, T., Létard, J.-F., & Burriel, R. (2010). Two-Step Thermal Spin Transition and LIESST Relaxation of the Polymeric Spin-Crossover Compounds Fe(X-py)2[Ag(CN)2]2 (X=H, 3-methyl, 4-methyl, 3,4-dimethyl, 3-Cl). Chemistry - A European Journal, 16(29), 8785-8796. doi:10.1002/chem.201000433 | es_ES |
dc.description.references | Galet, A., Niel, V., Muñoz, M. C., & Real, J. A. (2003). Synergy between Spin Crossover and Metallophilicity in Triple Interpenetrated 3D Nets with the NbO Structure Type. Journal of the American Chemical Society, 125(47), 14224-14225. doi:10.1021/ja0377347 | es_ES |
dc.description.references | Galet, A., Muñoz, M. C., Martínez, V., & Real, J. A. (2004). Supramolecular isomerism in spin crossover networks with aurophilic interactions. Chem. Commun., (20), 2268-2269. doi:10.1039/b409974e | es_ES |
dc.description.references | Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E., & Real, J. A. (2003). Crystalline-State Reaction with Allosteric Effect in Spin-Crossover, Interpenetrated Networks with Magnetic and Optical Bistability. Angewandte Chemie, 115(32), 3890-3893. doi:10.1002/ange.200351853 | es_ES |
dc.description.references | Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E., & Real, J. A. (2003). Crystalline-State Reaction with Allosteric Effect in Spin-Crossover, Interpenetrated Networks with Magnetic and Optical Bistability. Angewandte Chemie International Edition, 42(32), 3760-3763. doi:10.1002/anie.200351853 | es_ES |
dc.description.references | Agustí, G., Cobo, S., Gaspar, A. B., Molnár, G., Moussa, N. O., Szilágyi, P. Á., … Bousseksou, A. (2008). Thermal and Light-Induced Spin Crossover Phenomena in New 3D Hofmann-Like Microporous Metalorganic Frameworks Produced As Bulk Materials and Nanopatterned Thin Films. Chemistry of Materials, 20(21), 6721-6732. doi:10.1021/cm8019878 | es_ES |
dc.description.references | Muñoz-Lara, F. J., Gaspar, A. B., Muñoz, M. C., Arai, M., Kitagawa, S., Ohba, M., & Real, J. A. (2012). Sequestering Aromatic Molecules with a Spin-Crossover FeII Microporous Coordination Polymer. Chemistry - A European Journal, 18(26), 8013-8018. doi:10.1002/chem.201200377 | es_ES |
dc.description.references | Bartual-Murgui, C., Ortega-Villar, N. A., Shepherd, H. J., Muñoz, M. C., Salmon, L., Molnár, G., … Real, J. A. (2011). Enhanced porosity in a new 3D Hofmann-like network exhibiting humidity sensitive cooperative spin transitions at room temperature. Journal of Materials Chemistry, 21(20), 7217. doi:10.1039/c0jm04387g | es_ES |
dc.description.references | Bartual-Murgui, C., Salmon, L., Akou, A., Ortega-Villar, N. A., Shepherd, H. J., Muñoz, M. C., … Bousseksou, A. (2011). Synergetic Effect of Host-Guest Chemistry and Spin Crossover in 3D Hofmann-like Metal-Organic Frameworks [Fe(bpac)M(CN)4] (M=Pt, Pd, Ni). Chemistry - A European Journal, 18(2), 507-516. doi:10.1002/chem.201102357 | es_ES |