- -

[Fe(TPT)2/3{MI(CN)2}2]·nSolv (MI=Ag, Au): new bimetallic porous coordination polymers with spin-crossover properties

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

[Fe(TPT)2/3{MI(CN)2}2]·nSolv (MI=Ag, Au): new bimetallic porous coordination polymers with spin-crossover properties

Show simple item record

Files in this item

dc.contributor.author Arcis-Castillo, Zulema es_ES
dc.contributor.author Muñoz Roca, María del Carmen es_ES
dc.contributor.author Molnár, Gábor es_ES
dc.contributor.author Bousseksou, Azzedine es_ES
dc.contributor.author Real, José Antonio es_ES
dc.date.accessioned 2013-11-19T16:03:22Z
dc.date.issued 2013-05-17
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/33766
dc.description.abstract Two new heterobimetallic porous coordination polymers with the formula [Fe(TPT)2/3{MI(CN)2}2]¿nSolv (TPT=[(2,4,6-tris(4-pyridyl)-1,3,5-triazine]; MI=Ag (nSolv=0, 1¿MeOH, 2¿CH2Cl2), Au (nSolv=0, 2¿CH2Cl2)) have been synthesized and their crystal structures were determined at 120¿K and 293¿K by single-crystal X-ray analysis. These structures crystallized in the trigonal R-3m space group. The FeII ion resides at an inversion centre that defines a [FeN6] coordination core. Four dicyanometallate groups coordinate at the equatorial positions, whilst the axial positions are occupied by the TPT ligand. Each TPT ligand is centred in a ternary axis and bridges three crystallographically equivalent FeII ions, whilst each dicyanometallate group bridges two crystallographically equivalent FeII ions that define a 3D network with the topology of NbO. There are two such networks, which interpenetrate each other, thereby giving rise to large spaces in which very labile solvent molecules are included (CH2Cl2 or MeOH). Crystallographic analysis confirmed the reversible structural changes that were associated with the occurrence of spin-crossover behaviour at the FeII ions, the most significant structural variation being the change in unit-cell volume (about 59¿Å3 per FeII ion). The spin-crossover behaviour has been monitored by means of thermal dependence of the magnetic properties, Mössbauer spectroscopy, and calorimetry. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Ciencia e Innovacion (MICINN, presently the Ministerio de Economia y Competitividad) and FEDER funds (CTQ2010-18414), the Generalitat Valenciana through projects PROMETEO/2012/049 and ACOMP2012/233, and the French ANR Chemoswitch project. Z.A.-C. thanks the Spanish Ministerio de Educacion, Cultura y Deporte for a doctoral (FPU) grant. en_EN
dc.format.extent 11 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Coordination polymers es_ES
dc.subject Iron es_ES
dc.subject Porosity es_ES
dc.subject Self-assembly es_ES
dc.subject Spin crossover es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title [Fe(TPT)2/3{MI(CN)2}2]·nSolv (MI=Ag, Au): new bimetallic porous coordination polymers with spin-crossover properties es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/chem.201203559
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-18414/ES/MATERIALES MULTIPROPIEDAD BASADOS EN EL FENOMENO "SPIN CROSSOVER": MEMORIAS Y SENSORES MOLECULARES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F233/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F049/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Arcis-Castillo, Z.; Muñoz Roca, MDC.; Molnár, G.; Bousseksou, A.; Real, JA. (2013). [Fe(TPT)2/3{MI(CN)2}2]·nSolv (MI=Ag, Au): new bimetallic porous coordination polymers with spin-crossover properties. Chemistry - A European Journal. 19(21):6851-6861. https://doi.org/10.1002/chem.201203559 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/chem.201203559/suppinfo es_ES
dc.description.upvformatpinicio 6851 es_ES
dc.description.upvformatpfin 6861 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 21 es_ES
dc.relation.senia 246060
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.description.references Das, M. C., Xiang, S., Zhang, Z., & Chen, B. (2011). Funktionelle Gemischtmetall-organische Gerüste mit Metalloliganden. Angewandte Chemie, 123(45), 10696-10707. doi:10.1002/ange.201101534 es_ES
dc.description.references Das, M. C., Xiang, S., Zhang, Z., & Chen, B. (2011). Functional Mixed Metal-Organic Frameworks with Metalloligands. Angewandte Chemie International Edition, 50(45), 10510-10520. doi:10.1002/anie.201101534 es_ES
dc.description.references Kitagawa, S., Kitaura, R., & Noro, S. (2004). Funktionale poröse Koordinationspolymere. Angewandte Chemie, 116(18), 2388-2430. doi:10.1002/ange.200300610 es_ES
dc.description.references Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 es_ES
dc.description.references KITAGAWA, S., & MATSUDA, R. (2007). Chemistry of coordination space of porous coordination polymers. Coordination Chemistry Reviews, 251(21-24), 2490-2509. doi:10.1016/j.ccr.2007.07.009 es_ES
dc.description.references Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b es_ES
dc.description.references Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284. doi:10.1039/b804680h es_ES
dc.description.references Rocha, J., Carlos, L. D., Paz, F. A. A., & Ananias, D. (2011). Luminescent multifunctional lanthanides-based metal–organic frameworks. Chem. Soc. Rev., 40(2), 926-940. doi:10.1039/c0cs00130a es_ES
dc.description.references Wang, C., & Lin, W. (2011). Diffusion-Controlled Luminescence Quenching in Metal−Organic Frameworks. Journal of the American Chemical Society, 133(12), 4232-4235. doi:10.1021/ja111197d es_ES
dc.description.references Liu, D., Huxford, R. C., & Lin, W. (2011). Phosphorescent Nanoscale Coordination Polymers as Contrast Agents for Optical Imaging. Angewandte Chemie, 123(16), 3780-3784. doi:10.1002/ange.201008277 es_ES
dc.description.references Liu, D., Huxford, R. C., & Lin, W. (2011). Phosphorescent Nanoscale Coordination Polymers as Contrast Agents for Optical Imaging. Angewandte Chemie International Edition, 50(16), 3696-3700. doi:10.1002/anie.201008277 es_ES
dc.description.references Stylianou, K. C., Heck, R., Chong, S. Y., Bacsa, J., Jones, J. T. A., Khimyak, Y. Z., … Rosseinsky, M. J. (2010). A Guest-Responsive Fluorescent 3D Microporous Metal−Organic Framework Derived from a Long-Lifetime Pyrene Core. Journal of the American Chemical Society, 132(12), 4119-4130. doi:10.1021/ja906041f es_ES
dc.description.references Xie, Z., Ma, L., deKrafft, K. E., Jin, A., & Lin, W. (2010). Porous Phosphorescent Coordination Polymers for Oxygen Sensing. Journal of the American Chemical Society, 132(3), 922-923. doi:10.1021/ja909629f es_ES
dc.description.references Maspoch, D., Ruiz-Molina, D., & Veciana, J. (2007). Old materials with new tricks: multifunctional open-framework materials. Chemical Society Reviews, 36(5), 770. doi:10.1039/b501600m es_ES
dc.description.references Dechambenoit, P., & Long, J. R. (2011). Microporous magnets. Chemical Society Reviews, 40(6), 3249. doi:10.1039/c0cs00167h es_ES
dc.description.references Avendano, C., Zhang, Z., Ota, A., Zhao, H., & Dunbar, K. R. (2011). Dramatically Different Conductivity Properties of Metal-Organic Framework Polymorphs of Tl(TCNQ): An Unexpected Room-Temperature Crystal-to-Crystal Phase Transition. Angewandte Chemie, 123(29), 6673-6677. doi:10.1002/ange.201100372 es_ES
dc.description.references Avendano, C., Zhang, Z., Ota, A., Zhao, H., & Dunbar, K. R. (2011). Dramatically Different Conductivity Properties of Metal-Organic Framework Polymorphs of Tl(TCNQ): An Unexpected Room-Temperature Crystal-to-Crystal Phase Transition. Angewandte Chemie International Edition, 50(29), 6543-6547. doi:10.1002/anie.201100372 es_ES
dc.description.references Shimomura, S., & Kitagawa, S. (2011). Soft porous crystal meets TCNQ: charge transfer-type porous coordination polymers. Journal of Materials Chemistry, 21(15), 5537. doi:10.1039/c1jm10208g es_ES
dc.description.references Shimomura, S., Yanai, N., Matsuda, R., & Kitagawa, S. (2011). Impact of Metal-Ion Dependence on the Porous and Electronic Properties of TCNQ-Dianion-Based Porous Coordination Polymers. Inorganic Chemistry, 50(1), 172-177. doi:10.1021/ic1015498 es_ES
dc.description.references Shigematsu, A., Yamada, T., & Kitagawa, H. (2011). Wide Control of Proton Conductivity in Porous Coordination Polymers. Journal of the American Chemical Society, 133(7), 2034-2036. doi:10.1021/ja109810w es_ES
dc.description.references Bureekaew, S., Horike, S., Higuchi, M., Mizuno, M., Kawamura, T., Tanaka, D., … Kitagawa, S. (2009). One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nature Materials, 8(10), 831-836. doi:10.1038/nmat2526 es_ES
dc.description.references Goodwin, H. A. (1976). Spin Transitions in six-coordinate iron(II) complexes. Coordination Chemistry Reviews, 18(3), 293-325. doi:10.1016/s0010-8545(00)80430-0 es_ES
dc.description.references Gütlich, P. (s. f.). Spin crossover in iron(II)-complexes. Metal Complexes, 83-195. doi:10.1007/bfb0111269 es_ES
dc.description.references Konig, E., Ritter, G., & Kulshreshtha, S. K. (1985). The nature of spin-state transitions in solid complexes of iron(II) and the interpretation of some associated phenomena. Chemical Reviews, 85(3), 219-234. doi:10.1021/cr00067a003 es_ES
dc.description.references Hauser, A. (1995). Intersystem Crossing in Iron(II) Coordination Compounds: A Model Process Between Classical and Quantum Mechanical Behaviour. Comments on Inorganic Chemistry, 17(1), 17-40. doi:10.1080/02603599508035780 es_ES
dc.description.references König, E. (1991). Nature and dynamics of the spin-state interconversion in metal complexes. Structure and Bonding, 51-152. doi:10.1007/3-540-53499-7_2 es_ES
dc.description.references Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermisch und optisch schaltbare Eisen(II)-Komplexe. Angewandte Chemie, 106(20), 2109-2141. doi:10.1002/ange.19941062006 es_ES
dc.description.references Gütlich, P., Hauser, A., & Spiering, H. (1994). Thermal and Optical Switching of Iron(II) Complexes. Angewandte Chemie International Edition in English, 33(20), 2024-2054. doi:10.1002/anie.199420241 es_ES
dc.description.references Sato, O. (2003). Optically Switchable Molecular Solids:  Photoinduced Spin-Crossover, Photochromism, and Photoinduced Magnetization. Accounts of Chemical Research, 36(9), 692-700. doi:10.1021/ar020242z es_ES
dc.description.references Real, J. A., Gaspar, A. B., Niel, V., & Muñoz, M. C. (2003). Communication between iron(II) building blocks in cooperative spin transition phenomena. Coordination Chemistry Reviews, 236(1-2), 121-141. doi:10.1016/s0010-8545(02)00220-5 es_ES
dc.description.references Top. Curr. Chem. 2004 233-235 es_ES
dc.description.references Real, J. A., Gaspar, A. B., & Muñoz, M. C. (2005). Thermal, pressure and light switchable spin-crossover materials. Dalton Transactions, (12), 2062. doi:10.1039/b501491c es_ES
dc.description.references Halcrow, M. A. (2007). The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands. Polyhedron, 26(14), 3523-3576. doi:10.1016/j.poly.2007.03.033 es_ES
dc.description.references NIHEI, M., SHIGA, T., MAEDA, Y., & OSHIO, H. (2007). Spin crossover iron(III) complexes. Coordination Chemistry Reviews, 251(21-24), 2606-2621. doi:10.1016/j.ccr.2007.08.007 es_ES
dc.description.references Gamez, P., Costa, J. S., Quesada, M., & Aromí, G. (2009). Iron Spin-Crossover compounds: from fundamental studies to practical applications. Dalton Transactions, (38), 7845. doi:10.1039/b908208e es_ES
dc.description.references Halcrow, M. A. (2009). Iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridines—A versatile system for spin-crossover research. Coordination Chemistry Reviews, 253(21-22), 2493-2514. doi:10.1016/j.ccr.2009.07.009 es_ES
dc.description.references Olguín, J., & Brooker, S. (2011). Spin crossover active iron(II) complexes of selected pyrazole-pyridine/pyrazine ligands. Coordination Chemistry Reviews, 255(1-2), 203-240. doi:10.1016/j.ccr.2010.08.002 es_ES
dc.description.references Bousseksou, A., Molnár, G., Salmon, L., & Nicolazzi, W. (2011). Molecular spin crossover phenomenon: recent achievements and prospects. Chemical Society Reviews, 40(6), 3313. doi:10.1039/c1cs15042a es_ES
dc.description.references Real, J. A., Andres, E., Munoz, M. C., Julve, M., Granier, T., Bousseksou, A., & Varret, F. (1995). Spin Crossover in a Catenane Supramolecular System. Science, 268(5208), 265-267. doi:10.1126/science.268.5208.265 es_ES
dc.description.references Halder, G. J. (2002). Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material. Science, 298(5599), 1762-1765. doi:10.1126/science.1075948 es_ES
dc.description.references Neville, S. M., Moubaraki, B., Murray, K. S., & Kepert, C. J. (2007). A Thermal Spin Transition in a Nanoporous Iron(II) Coordination Framework Material. Angewandte Chemie, 119(12), 2105-2108. doi:10.1002/ange.200603977 es_ES
dc.description.references Neville, S. M., Moubaraki, B., Murray, K. S., & Kepert, C. J. (2007). A Thermal Spin Transition in a Nanoporous Iron(II) Coordination Framework Material. Angewandte Chemie International Edition, 46(12), 2059-2062. doi:10.1002/anie.200603977 es_ES
dc.description.references Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Moubaraki, B., Murray, K. S., & Kepert, C. J. (2009). Guest Tunable Structure and Spin Crossover Properties in a Nanoporous Coordination Framework Material. Journal of the American Chemical Society, 131(34), 12106-12108. doi:10.1021/ja905360g es_ES
dc.description.references Neville, S. M., Halder, G. J., Chapman, K. W., Duriska, M. B., Southon, P. D., Cashion, J. D., … Kepert, C. J. (2008). Single-Crystal to Single-Crystal Structural Transformation and Photomagnetic Properties of a Porous Iron(II) Spin-Crossover Framework. Journal of the American Chemical Society, 130(9), 2869-2876. doi:10.1021/ja077958f es_ES
dc.description.references Halder, G. J., Chapman, K. W., Neville, S. M., Moubaraki, B., Murray, K. S., Létard, J.-F., & Kepert, C. J. (2008). Elucidating the Mechanism of a Two-Step Spin Transition in a Nanoporous Metal−Organic Framework. Journal of the American Chemical Society, 130(51), 17552-17562. doi:10.1021/ja8068038 es_ES
dc.description.references Hofmann, K. A., & Küspert, F. (1897). Verbindungen von Kohlenwasserstoffen mit Metallsalzen. Zeitschrift für anorganische Chemie, 15(1), 204-207. doi:10.1002/zaac.18970150118 es_ES
dc.description.references POWELL, H. M., & RAYNER, J. H. (1949). Clathrate Compound Formed by Benzene with an Ammonia–Nickel Cyanide Complex. Nature, 163(4145), 566-567. doi:10.1038/163566a0 es_ES
dc.description.references Iwamoto, T. (1996). Past, present and future of the clathrate inclusion compounds built of cyanometallate hosts. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 24(1-2), 61-132. doi:10.1007/bf01053426 es_ES
dc.description.references Nishikiori, S., Yoshikawa, H., Sano, Y., & Iwamoto, T. (2005). Inorganic−Organic Hybrid Molecular Architectures of Cyanometalate Host and Organic Guest Systems:  Specific Behavior of the Guests. Accounts of Chemical Research, 38(4), 227-234. doi:10.1021/ar0401707 es_ES
dc.description.references Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B., & Real, J. A. (2001). Cooperative Spin Crossover Behavior in Cyanide-Bridged Fe(II)−M(II) Bimetallic 3D Hofmann-like Networks (M = Ni, Pd, and Pt). Inorganic Chemistry, 40(16), 3838-3839. doi:10.1021/ic010259y es_ES
dc.description.references Rodríguez-Velamazán, J. A., González, M. A., Real, J. A., Castro, M., Muñoz, M. C., Gaspar, A. B., … Kitagawa, S. (2012). A Switchable Molecular Rotator: Neutron Spectroscopy Study on a Polymeric Spin-Crossover Compound. Journal of the American Chemical Society, 134(11), 5083-5089. doi:10.1021/ja206228n es_ES
dc.description.references Ohba, M., Yoneda, K., Agustí, G., Muñoz, M.  Carme., Gaspar, A., Real, J., … Kitagawa, S. (2009). Bidirectional Chemo‐Switching of Spin State in a Microporous Framework. Angewandte Chemie, 121(26), 4861-4865. doi:10.1002/ange.200806039 es_ES
dc.description.references Ohba, M., Yoneda, K., Agustí, G., Muñoz, M. C., Gaspar, A. B., Real, J. A., … Kitagawa, S. (2009). Bidirectional Chemo-Switching of Spin State in a Microporous Framework. Angewandte Chemie International Edition, 48(26), 4767-4771. doi:10.1002/anie.200806039 es_ES
dc.description.references Boldog, I., Gaspar, A. B., Martínez, V., Pardo-Ibañez, P., Ksenofontov, V., Bhattacharjee, A., … Real, J. A. (2008). Spin-Crossover Nanocrystals with Magnetic, Optical, and Structural Bistability Near Room Temperature. Angewandte Chemie, 120(34), 6533-6537. doi:10.1002/ange.200801673 es_ES
dc.description.references Boldog, I., Gaspar, A. B., Martínez, V., Pardo-Ibañez, P., Ksenofontov, V., Bhattacharjee, A., … Real, J. A. (2008). Spin-Crossover Nanocrystals with Magnetic, Optical, and Structural Bistability Near Room Temperature. Angewandte Chemie International Edition, 47(34), 6433-6437. doi:10.1002/anie.200801673 es_ES
dc.description.references Cobo, S., Molnár, G., Real, J. A., & Bousseksou, A. (2006). Multilayer Sequential Assembly of Thin Films That Display Room-Temperature Spin Crossover with Hysteresis. Angewandte Chemie, 118(35), 5918-5921. doi:10.1002/ange.200601885 es_ES
dc.description.references Cobo, S., Molnár, G., Real, J. A., & Bousseksou, A. (2006). Multilayer Sequential Assembly of Thin Films That Display Room-Temperature Spin Crossover with Hysteresis. Angewandte Chemie International Edition, 45(35), 5786-5789. doi:10.1002/anie.200601885 es_ES
dc.description.references Molnár, G., Cobo, S., Real, J. A., Carcenac, F., Daran, E., Vieu, C., & Bousseksou, A. (2007). A Combined Top-Down/Bottom-Up Approach for the Nanoscale Patterning of Spin-Crossover Coordination Polymers. Advanced Materials, 19(16), 2163-2167. doi:10.1002/adma.200700448 es_ES
dc.description.references Southon, P. D., Liu, L., Fellows, E. A., Price, D. J., Halder, G. J., Chapman, K. W., … Kepert, C. J. (2009). Dynamic Interplay between Spin-Crossover and Host−Guest Function in a Nanoporous Metal−Organic Framework Material. Journal of the American Chemical Society, 131(31), 10998-11009. doi:10.1021/ja902187d es_ES
dc.description.references Agustí, G., Ohtani, R., Yoneda, K., Gaspar, A. B., Ohba, M., Sánchez-Royo, J. F., … Real, J. A. (2009). Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer. Angewandte Chemie, 121(47), 9106-9109. doi:10.1002/ange.200904379 es_ES
dc.description.references Agustí, G., Ohtani, R., Yoneda, K., Gaspar, A. B., Ohba, M., Sánchez-Royo, J. F., … Real, J. A. (2009). Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer. Angewandte Chemie International Edition, 48(47), 8944-8947. doi:10.1002/anie.200904379 es_ES
dc.description.references Ohtani, R., Yoneda, K., Furukawa, S., Horike, N., Kitagawa, S., Gaspar, A. B., … Ohba, M. (2011). Precise Control and Consecutive Modulation of Spin Transition Temperature Using Chemical Migration in Porous Coordination Polymers. Journal of the American Chemical Society, 133(22), 8600-8605. doi:10.1021/ja111674c es_ES
dc.description.references Muñoz, M. C., & Real, J. A. (2011). Thermo-, piezo-, photo- and chemo-switchable spin crossover iron(II)-metallocyanate based coordination polymers. Coordination Chemistry Reviews, 255(17-18), 2068-2093. doi:10.1016/j.ccr.2011.02.004 es_ES
dc.description.references Batten, S. R., Hoskins, B. F., & Robson, R. (1995). Two Interpenetrating 3D Networks Which Generate Spacious Sealed-Off Compartments Enclosing of the Order of 20 Solvent Molecules in the Structures of Zn(CN)(NO3)(tpt)2/3.cntdot.solv (tpt = 2,4,6-tri(4-pyridyl)-1,3,5-triazine, solv = .apprx.3/4C2H2Cl4.cntdot.3/4CH3OH or .apprx.3/2CHCl3.cntdot.1/3CH3OH). Journal of the American Chemical Society, 117(19), 5385-5386. doi:10.1021/ja00124a032 es_ES
dc.description.references Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F., & Robson, R. (1999). Ni(tpt)(NO3)2 – ein dreidimensionales, selbstverkettetes Netz mit der ungewöhnlichen (12,3)-Topologie. Angewandte Chemie, 111(10), 1538-1540. doi:10.1002/(sici)1521-3757(19990517)111:10<1538::aid-ange1538>3.0.co;2-2 es_ES
dc.description.references Abrahams, B. F., Batten, S. R., Hamit, H., Hoskins, B. F., & Robson, R. (1996). A Cubic(3,4)-Connected Net with Large Cavities in Solvated[Cu3(tpt)4](ClO4)3(tpt= 2,4,6-Tri(4-pyridyl)-1,3,5-triazine). Angewandte Chemie International Edition in English, 35(15), 1690-1692. doi:10.1002/anie.199616901 es_ES
dc.description.references Abrahams, B. F., Batten, S. R., Hamit, H., Hoskins, B. F., & Robson, R. (1996). A wellsian ‘three-dimensional’ racemate: eight interpenetrating, enantiomorphic (10,3)-a nets, four right- and four left-handed. Chem. Commun., (11), 1313-1314. doi:10.1039/cc9960001313 es_ES
dc.description.references Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F., & Robson, R. (1999). Ni(tpt)(NO3)2—A Three-Dimensional Network with the Exceptional (12,3) Topology: A Self-Entangled Single Net. Angewandte Chemie International Edition, 38(10), 1475-1477. doi:10.1002/(sici)1521-3773(19990517)38:10<1475::aid-anie1475>3.0.co;2-3 es_ES
dc.description.references Batten, S. R., Hoskins, B. F., Robson, R., Moubaraki, B., & Murray, K. S. (2000). An alternative to interpenetration whereby nets with large windows may achieve satisfactory space filling. Chemical Communications, (13), 1095-1096. doi:10.1039/b002193h es_ES
dc.description.references Biradha, K., & Fujita, M. (2002). Angewandte Chemie, 114(18), 3542-3545. doi:10.1002/1521-3757(20020916)114:18<3542::aid-ange3542>3.0.co;2-p es_ES
dc.description.references Biradha, K., & Fujita, M. (2002). A Springlike 3D-Coordination Network That Shrinks or Swells in a Crystal-to-Crystal Manner upon Guest Removal or Readsorption. Angewandte Chemie International Edition, 41(18), 3392-3395. doi:10.1002/1521-3773(20020916)41:18<3392::aid-anie3392>3.0.co;2-v es_ES
dc.description.references Ohmori, O., Kawano, M., & Fujita, M. (2004). Crystal-to-Crystal Guest Exchange of Large Organic Molecules within a 3D Coordination Network. Journal of the American Chemical Society, 126(50), 16292-16293. doi:10.1021/ja046478a es_ES
dc.description.references Dybtsev, D. N., Chun, H., & Kim, K. (2004). Three-dimensional metal–organic framework with (3,4)-connected net, synthesized from an ionic liquid medium. Chem. Commun., (14), 1594-1595. doi:10.1039/b403001j es_ES
dc.description.references Inokuma, Y., Arai, T., & Fujita, M. (2010). Networked molecular cages as crystalline sponges for fullerenes and other guests. Nature Chemistry, 2(9), 780-783. doi:10.1038/nchem.742 es_ES
dc.description.references Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930 es_ES
dc.description.references Jansen, M. (1987). Homoatomare d10-d10-Wechselwirkungen — Auswirkungen auf Struktur- und Stoffeigenschaften. Angewandte Chemie, 99(11), 1136-1149. doi:10.1002/ange.19870991106 es_ES
dc.description.references Jansen, M. (1987). Homoatomic d10–d10 Interactions: Their Effects on Structure and Chemical and Physical Properties. Angewandte Chemie International Edition in English, 26(11), 1098-1110. doi:10.1002/anie.198710981 es_ES
dc.description.references Slichter, C. P., & Drickamer, H. G. (1972). Pressure‐Induced Electronic Changes in Compounds of Iron. The Journal of Chemical Physics, 56(5), 2142-2160. doi:10.1063/1.1677511 es_ES
dc.description.references Martin, J.-P., Zarembowitch, J., Bousseksou, A., Dworkin, A., Haasnoot, J. G., & Varret, F. (1994). Solid State Effects on Spin Transitions: Magnetic, Calorimetric, and Moessbauer-Effect Properties of [FexCo1-x(4,4’-bis-1,2,4-triazole)2(NCS)2].cntdot.H2O Mixed-Crystal Compounds. Inorganic Chemistry, 33(26), 6325-6333. doi:10.1021/ic00104a049 es_ES
dc.description.references Sorai, M., Nakano, M., & Miyazaki, Y. (2006). Calorimetric Investigation of Phase Transitions Occurring in Molecule-Based Magnets†. Chemical Reviews, 106(3), 976-1031. doi:10.1021/cr960049g es_ES
dc.description.references Rodríguez-Velamazán, J. A., Castro, M., Palacios, E., Burriel, R., Kitazawa, T., & Kawasaki, T. (2007). A Two-Step Spin Transition with a Disordered Intermediate State in a New Two-Dimensional Coordination Polymer. The Journal of Physical Chemistry B, 111(6), 1256-1261. doi:10.1021/jp066010p es_ES
dc.description.references Kosone, T., Kachi-Terajima, C., Kanadani, C., Saito, T., & Kitazawa, T. (2008). Isotope Effect on Spin-crossover Transition in a New Two-dimensional Coordination Polymer [FeII(C5H5N)2][AuI(CN)2]2, [FeII(C5D5N)2][AuI(CN)2]2, and [FeII(C5H515N)2][AuI(CN)2]2. Chemistry Letters, 37(7), 754-755. doi:10.1246/cl.2008.754 es_ES
dc.description.references Muñoz, M. C., Gaspar, A. B., Galet, A., & Real, J. A. (2007). Spin-Crossover Behavior in Cyanide-Bridged Iron(II)−Silver(I) Bimetallic 2D Hofmann-like Metal−Organic Frameworks. Inorganic Chemistry, 46(20), 8182-8192. doi:10.1021/ic700607x es_ES
dc.description.references Agustí, G., Muñoz, M. C., Gaspar, A. B., & Real, J. A. (2008). Spin-Crossover Behavior in Cyanide-bridged Iron(II)−Gold(I) Bimetallic 2D Hofmann-like Metal−Organic Frameworks§. Inorganic Chemistry, 47(7), 2552-2561. doi:10.1021/ic701865k es_ES
dc.description.references Rodríguez-Velamazán, J. A., Carbonera, C., Castro, M., Palacios, E., Kitazawa, T., Létard, J.-F., & Burriel, R. (2010). Two-Step Thermal Spin Transition and LIESST Relaxation of the Polymeric Spin-Crossover Compounds Fe(X-py)2[Ag(CN)2]2 (X=H, 3-methyl, 4-methyl, 3,4-dimethyl, 3-Cl). Chemistry - A European Journal, 16(29), 8785-8796. doi:10.1002/chem.201000433 es_ES
dc.description.references Galet, A., Niel, V., Muñoz, M. C., & Real, J. A. (2003). Synergy between Spin Crossover and Metallophilicity in Triple Interpenetrated 3D Nets with the NbO Structure Type. Journal of the American Chemical Society, 125(47), 14224-14225. doi:10.1021/ja0377347 es_ES
dc.description.references Galet, A., Muñoz, M. C., Martínez, V., & Real, J. A. (2004). Supramolecular isomerism in spin crossover networks with aurophilic interactions. Chem. Commun., (20), 2268-2269. doi:10.1039/b409974e es_ES
dc.description.references Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E., & Real, J. A. (2003). Crystalline-State Reaction with Allosteric Effect in Spin-Crossover, Interpenetrated Networks with Magnetic and Optical Bistability. Angewandte Chemie, 115(32), 3890-3893. doi:10.1002/ange.200351853 es_ES
dc.description.references Niel, V., Thompson, A. L., Muñoz, M. C., Galet, A., Goeta, A. E., & Real, J. A. (2003). Crystalline-State Reaction with Allosteric Effect in Spin-Crossover, Interpenetrated Networks with Magnetic and Optical Bistability. Angewandte Chemie International Edition, 42(32), 3760-3763. doi:10.1002/anie.200351853 es_ES
dc.description.references Agustí, G., Cobo, S., Gaspar, A. B., Molnár, G., Moussa, N. O., Szilágyi, P. Á., … Bousseksou, A. (2008). Thermal and Light-Induced Spin Crossover Phenomena in New 3D Hofmann-Like Microporous Metalorganic Frameworks Produced As Bulk Materials and Nanopatterned Thin Films. Chemistry of Materials, 20(21), 6721-6732. doi:10.1021/cm8019878 es_ES
dc.description.references Muñoz-Lara, F. J., Gaspar, A. B., Muñoz, M. C., Arai, M., Kitagawa, S., Ohba, M., & Real, J. A. (2012). Sequestering Aromatic Molecules with a Spin-Crossover FeII Microporous Coordination Polymer. Chemistry - A European Journal, 18(26), 8013-8018. doi:10.1002/chem.201200377 es_ES
dc.description.references Bartual-Murgui, C., Ortega-Villar, N. A., Shepherd, H. J., Muñoz, M. C., Salmon, L., Molnár, G., … Real, J. A. (2011). Enhanced porosity in a new 3D Hofmann-like network exhibiting humidity sensitive cooperative spin transitions at room temperature. Journal of Materials Chemistry, 21(20), 7217. doi:10.1039/c0jm04387g es_ES
dc.description.references Bartual-Murgui, C., Salmon, L., Akou, A., Ortega-Villar, N. A., Shepherd, H. J., Muñoz, M. C., … Bousseksou, A. (2011). Synergetic Effect of Host-Guest Chemistry and Spin Crossover in 3D Hofmann-like Metal-Organic Frameworks [Fe(bpac)M(CN)4] (M=Pt, Pd, Ni). Chemistry - A European Journal, 18(2), 507-516. doi:10.1002/chem.201102357 es_ES


This item appears in the following Collection(s)

Show simple item record