Domenech, J.; De La Ossa Perez, BA.; Sahuquillo Borrás, J.; Gil Salinas, JA.; Pont Sanjuan, A. (2012). A taxonomy of web prediction algorithms. Expert Systems with Applications. 39(9):8496-8502. https://doi.org/10.1016/j.eswa.2012.01.140
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/34812
Title:
|
A taxonomy of web prediction algorithms
|
Author:
|
Domenech, Josep
De La Ossa Perez, Bernardo Antonio
Sahuquillo Borrás, Julio
Gil Salinas, José Antonio
Pont Sanjuan, Ana
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
|
Issued date:
|
|
Abstract:
|
Web prefetching techniques are an attractive solution to reduce the user-perceived latency. These techniques are driven by a prediction engine or algorithm that guesses following actions of web users. A large amount of ...[+]
Web prefetching techniques are an attractive solution to reduce the user-perceived latency. These techniques are driven by a prediction engine or algorithm that guesses following actions of web users. A large amount of prediction algorithms has been proposed since the first prefetching approach was published, although it is only over the last two or three years when they have begun to be successfully implemented in commercial products. These algorithms can be implemented in any element of the web architecture and can use a wide variety of information as input. This affects their structure, data system, computational resources and accuracy. The knowledge of the input information and the understanding of how it can be handled to make predictions can help to improve the design of current prediction engines, and consequently prefetching techniques. This paper analyzes fifty of the most relevant algorithms proposed along 15 years of prefetching research and proposes a taxonomy where the algorithms are classified according to the input data they use. For each group, the main advantages and shortcomings are highlighted. © 2012 Elsevier Ltd. All rights reserved.
[-]
|
Subjects:
|
Prediction algorithms
,
Web prefetching
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Expert Systems with Applications. (issn:
0957-4174
)
|
DOI:
|
10.1016/j.eswa.2012.01.140
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://dx.doi.org/10.1016/j.eswa.2012.01.140
|
Project ID:
|
info:eu-repo/grantAgreement/MICINN//TIN2009-08201/ES/Acceso Inteligente A Los Contenidos Para Mejorar Las Prestaciones De La Web/
info:eu-repo/grantAgreement/GVA//GV%2F2011%2F002/
info:eu-repo/grantAgreement/UPV//PAID-06-10-2424/
|
Thanks:
|
This work has been partially supported by Spanish Ministry of Science and Innovation under Grant TIN2009-08201, Generalitat Valenciana under Grant GV/2011/002 and Universitat Politecnica de Valencia under Grant PAID-06-10/2424.[+]
This work has been partially supported by Spanish Ministry of Science and Innovation under Grant TIN2009-08201, Generalitat Valenciana under Grant GV/2011/002 and Universitat Politecnica de Valencia under Grant PAID-06-10/2424.
[-]
|
Type:
|
Artículo
|