Mostrar el registro sencillo del ítem
dc.contributor.author | Alcaraz, Raúl | es_ES |
dc.contributor.author | Sandberg, Frida | es_ES |
dc.contributor.author | Sornmo, Leif | es_ES |
dc.contributor.author | Rieta Ibañez, José Joaquín | es_ES |
dc.date.accessioned | 2014-01-27T15:54:11Z | |
dc.date.issued | 2011-05 | |
dc.identifier.issn | 0018-9294 | |
dc.identifier.uri | http://hdl.handle.net/10251/35186 | |
dc.description.abstract | The problem of classifying short atrial fibrillatory segments in ambulatory ECG recordings as being either paroxysmal or persistent is addressed by investigating a robust approach to signal characterization. The method comprises preprocessing estimation of the dominant atrial frequency for the purpose of controlling the subbands of a filter bank, computation of the relative subband (harmonics) energy, and the subband sample entropy. Using minimum-error-rate classification of different feature vectors, a data set consisting of 24-h ambulatory recordings from 50 subjects with either paroxysmal (26) or persistent (24) atrial fibrillation (AF) was analyzed on a 10-s segment basis; a total of 212,196 segments were classified. The best performance in terms of area under the receiver operating characteristic curve was obtained for a feature vector defined by the subband sample entropy of the dominant atrial frequency and the relative harmonics energy, resulting in a value of 0.923, whereas that of the dominant atrial frequency was equal to 0.826. It is concluded that paroxysmal and persistent AFs can be discriminated from short segments with good accuracy at any time of an ambulatory recording. © 2006 IEEE. | es_ES |
dc.description.sponsorship | January 11, 2011; accepted January 22, 2011. Date of publication February 10, 2011; date of current version April 20, 2011. This work was supported in part by the Spanish Ministry of Science and Innovation under Project TEC2010-20633 and the Junta de Comunidades de Castilla La Mancha under Project PII2C09-0224-5983, Project PII1C09-0036-3237, and Project PPII11-0194-8121. Asterisk indicates corresponding author. | en_EN |
dc.format.extent | 9 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | es_ES |
dc.relation.ispartof | IEEE Transactions on Biomedical Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Atrial fibrillation | es_ES |
dc.subject | Atrial organization | es_ES |
dc.subject | Dominant atrial frequency | es_ES |
dc.subject | Electrocardiogram | es_ES |
dc.subject | Filter bank | es_ES |
dc.subject | Hidden Markov model | es_ES |
dc.subject | Sample entropy | es_ES |
dc.subject | Classification (of information) | es_ES |
dc.subject | Diseases | es_ES |
dc.subject | Electrocardiography | es_ES |
dc.subject | Electrochromic devices | es_ES |
dc.subject | Entropy | es_ES |
dc.subject | Frequency estimation | es_ES |
dc.subject | Hidden Markov models | es_ES |
dc.subject | Filter banks | es_ES |
dc.subject | Adult | es_ES |
dc.subject | Aged | es_ES |
dc.subject | Ambulatory monitoring | es_ES |
dc.subject | Article | es_ES |
dc.subject | Clinical article | es_ES |
dc.subject | Controlled study | es_ES |
dc.subject | Diagnostic accuracy | es_ES |
dc.subject | Diagnostic error | es_ES |
dc.subject | Female | es_ES |
dc.subject | Frequency analysis | es_ES |
dc.subject | Heart atrium fibrillation | es_ES |
dc.subject | Human | es_ES |
dc.subject | Male | es_ES |
dc.subject | Paroxysmal heart atrium fibrillation | es_ES |
dc.subject | Persistent atrial fibrillation | es_ES |
dc.subject | Signal processing | es_ES |
dc.subject | Electrocardiography, Ambulatory | es_ES |
dc.subject | Humans | es_ES |
dc.subject | Markov Chains | es_ES |
dc.subject | Middle Aged | es_ES |
dc.subject | ROC Curve | es_ES |
dc.subject | Signal Processing, Computer-Assisted | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Classification of paroxysmal and persistent atrial fibrillation in ambulatory ECG recordings | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1109/TBME.2011.2112658 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-20633/ES/DESARROLLO Y APLICACION DE ESTIMADORES AVANZADOS DE ORGANIZACION PARA LA CLASIFICACION TERAPEUTICA Y EL SEGUIMIENTO DE PACIENTES CON FIBRILACION AURICULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PII1C09-0036-3237/ES/Predicción De Riesgo De Muerte Súbita Tras Infarto De Miocardio Mediante Técnicas Avanzadas De Procesado Digital De Señal/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PII2C09-0224-5983/ES/Aplicación De Metodologías No Lineales Para La Estimación Robusta Y No Invasiva De La Organización En Fibrilación Auricular/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PPII11-0194-8121]/ES/PPII11-0194-8121]/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Grupo de ingeniería en bioseñales e imagen radiológica | es_ES |
dc.description.bibliographicCitation | Alcaraz, R.; Sandberg, F.; Sornmo, L.; Rieta Ibañez, JJ. (2011). Classification of paroxysmal and persistent atrial fibrillation in ambulatory ECG recordings. IEEE Transactions on Biomedical Engineering. 58(5):1441-1449. https://doi.org/10.1109/TBME.2011.2112658 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1109/TBME.2011.2112658 | es_ES |
dc.description.upvformatpinicio | 1441 | es_ES |
dc.description.upvformatpfin | 1449 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 58 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 216776 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |