- -

Terahertz Radiation Shaping Based on Third-Order Dispersion and Self-Phase Modulation in Standard Single-Mode Optical Fiber

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Terahertz Radiation Shaping Based on Third-Order Dispersion and Self-Phase Modulation in Standard Single-Mode Optical Fiber

Show full item record

Palací López, J.; Vidal Rodriguez, B. (2012). Terahertz Radiation Shaping Based on Third-Order Dispersion and Self-Phase Modulation in Standard Single-Mode Optical Fiber. Journal of Infrared, Millimeter and Terahertz Waves. 33(6):605-614. https://doi.org/10.1007/s10762-012-9896-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/36524

Files in this item

Item Metadata

Title: Terahertz Radiation Shaping Based on Third-Order Dispersion and Self-Phase Modulation in Standard Single-Mode Optical Fiber
Author: Palací López, Jesús Vidal Rodriguez, Borja
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
Third-order dispersion and self-phase modulation in standard single-mode fibers are employed in a fiber-based THz time domain spectroscopy system for radiation shaping. Ultra-short optical pulses are converted into trains ...[+]
Subjects: Terahertz spectroscopy , Photoconductive materials , Nonlinear optics , Optical signal processing
Copyrigths: Cerrado
Source:
Journal of Infrared, Millimeter and Terahertz Waves. (issn: 1866-6892 )
DOI: 10.1007/s10762-012-9896-8
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/s10762-012-9896-8
Project ID:
info:eu-repo/grantAgreement/MICINN//TEC2009-08078/ES/Generacion Y Procesado Optico De Señales De Terahercios/
Thanks:
This work has been financially supported by the Spanish Ministerio de Ciencia e Innovacion TEC2009-08078. The work of J. Palaci was supported by the UPV-FPI program.
Type: Artículo

References

P.H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).

M. Tonouchi, Nature Photon. 1, 97 (2007).

J. Faist, F. Capasso, D.-L. Sivco, C. Sirtori, A.-L. Hutchinson, A.-Y- Cho, Science 264, 5158 (1994). [+]
P.H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002).

M. Tonouchi, Nature Photon. 1, 97 (2007).

J. Faist, F. Capasso, D.-L. Sivco, C. Sirtori, A.-L. Hutchinson, A.-Y- Cho, Science 264, 5158 (1994).

D. Saeedkia, S. Safavi-Naeini, J. Lightwave Technol. 26, 2409 (2008).

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, M. Schell, Opt. Express 16, 9565 (2008).

A.S. Weling, T.F. Heinz, J. Opt. Soc. Am. B 16, 1455 (1999).

O. Levinson, M. Horowitz, J. Lightwave Technol. 21, 1179 (2003).

J. Stigwall, A. Wiberg, IEEE Photon. Technol. Lett. 19, 931 (2007).

S. Vidal, J. Degert, J. Oberlé, E. Freysz, J. Opt. Soc. B 27, 1044 (2010).

G. P. Agrawal, Nonlinear fiber optics, 3rd edn. (Academic Press, 2001), p.1

G. P. Agrawal, Nonlinear fiber optics, 3rd edn. (Academic Press, 2001), pp.49

G. P. Agrawal, Nonlinear fiber optics, 3rd edn. (Academic Press, 2001), p.97

G. P. Agrawal, Nonlinear fiber optics, 3rd edn. (Academic Press, 2001), pp.51-55

J. Capmany, B. Ortega, D. Pastor, J. Lightwave Technol. 24, 201 (2006).

E. Hellstrom, H. Sunnerud, M. Westlund, M. Karlsson, J. Lightwave Technol. 21, 1188 (2003).

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record