- -

Environmental effects of a marine fish farm of gilthead seabream (Sparus aurata) in the NW Mediterranean Sea on water column and sediment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Environmental effects of a marine fish farm of gilthead seabream (Sparus aurata) in the NW Mediterranean Sea on water column and sediment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Morata Higón, Tania es_ES
dc.contributor.author Falco Giaccaglia, Silvia Laura es_ES
dc.contributor.author Gadea, Isabel es_ES
dc.contributor.author Sospedra Ciscar, Javier es_ES
dc.contributor.author Rodilla Alamá, Miguel es_ES
dc.date.accessioned 2014-03-28T11:34:12Z
dc.date.issued 2013-03-11
dc.identifier.issn 1355-557X
dc.identifier.uri http://hdl.handle.net/10251/36706
dc.description.abstract This study examined the effects of organic enrichment on water column, sediments and macrofauna caused by a fish farm in the Mediterranean Sea. Samples were collected on four sampling campaigns over a one-year cycle. Significant differences were found in the water column in dissolved oxygen, dissolved inorganic nitrogen, phosphate and total phosphorus concentrations between the fish farm and the control. The increase in the dissolved inorganic nitrogen and phosphate concentrations at the fish farm modified the stoichiometric ratios between nutrients, with silicate acting as limiting nutrient at the fish farm 11% more than at the control. Nevertheless, chlorophyll a concentration in the water column was higher at the control station, probably due to the fouling of the underwater fish farm structures. Significant differences were found in sediment concentrations of organic matter, total phosphorus and redox potential between the fish farm and the control. The Canonical Correlation Analysis indicated that organic matter, total phosphorus, redox potential and% of gravels accounted for 68.9% of the total variance in the species data. Changes were observed in macrofauna, with a decrease in number of species and up to a nine-fold increase in abundance with respect to the control. © 2013 Blackwell Publishing Ltd. es_ES
dc.description.sponsorship We would like to thank the Caja del Mediterraneo (CAM) for a pre-doctoral fellowship fund for this research and Antonio Asuncion Acuigroup Maremar Manager, for the facilities and support in conducting the study. The translation of this paper was funded by the Universidad Politecnica de Valencia, Spain. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Aquaculture Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Organic matter es_ES
dc.subject Nutrients es_ES
dc.subject Macrofauna es_ES
dc.subject Aquaculture es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Environmental effects of a marine fish farm of gilthead seabream (Sparus aurata) in the NW Mediterranean Sea on water column and sediment es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1111/are.12159
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Morata Higón, T.; Falco Giaccaglia, SL.; Gadea, I.; Sospedra Ciscar, J.; Rodilla Alamá, M. (2013). Environmental effects of a marine fish farm of gilthead seabream (Sparus aurata) in the NW Mediterranean Sea on water column and sediment. Aquaculture Research. 1-16. https://doi.org/10.1111/are.12159 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1111/are.12159 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 235330
dc.contributor.funder Fundación Caja del Mediterráneo
dc.description.references Aguado F. 2001 Impacto ambiental de los sistemas piscícolas marinos: la acuicultura en jaulas flotantes. Series de química oceanográfica 35 83 es_ES
dc.description.references Aguado-Giménez, F., & García-García, B. (2004). Assessment of some chemical parameters in marine sediments exposed to offshore cage fish farming influence: a pilot study. Aquaculture, 242(1-4), 283-295. doi:10.1016/j.aquaculture.2004.08.035 es_ES
dc.description.references Aksu M. Kocatas A. 2007 Environmental effects of the three fish farms in Izmir Bay (Aegean Sea-Turkey) on water column and sediment 414 es_ES
dc.description.references Asociación Empresarial de Productores de Cultivos Marinos (APROMAR) 2011 La Acuicultura Marina de Peces en España 77 es_ES
dc.description.references Banta, G., Holmer, M., Jensen, M., & Kristensen, E. (1999). Effects of two polychaete worms, Nereis diversicolor and Arenicola marina, on aerobic and anaerobic decomposition in a sandy marine sediment. Aquatic Microbial Ecology, 19, 189-204. doi:10.3354/ame019189 es_ES
dc.description.references Borja, Á., Rodríguez, J. G., Black, K., Bodoy, A., Emblow, C., Fernandes, T. F., … Angel, D. (2009). Assessing the suitability of a range of benthic indices in the evaluation of environmental impact of fin and shellfish aquaculture located in sites across Europe. Aquaculture, 293(3-4), 231-240. doi:10.1016/j.aquaculture.2009.04.037 es_ES
dc.description.references Braeckman, U., Provoost, P., Gribsholt, B., Van Gansbeke, D., Middelburg, J., Soetaert, K., … Vanaverbeke, J. (2010). Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation. Marine Ecology Progress Series, 399, 173-186. doi:10.3354/meps08336 es_ES
dc.description.references Chou, C. L., Haya, K., Paon, L. A., Burridge, L., & Moffatt, J. D. (2002). Aquaculture-related trace metals in sediments and lobsters and relevance to environmental monitoring program ratings for near-field effects. Marine Pollution Bulletin, 44(11), 1259-1268. doi:10.1016/s0025-326x(02)00219-9 es_ES
dc.description.references Christensen, P., Rysgaard, S., Sloth, N., Dalsgaard, T., & Schwærter, S. (2000). Sediment mineralization, nutrient fluxes, denitrification and dissimilatory nitrate reduction to ammonium in an estuarine fjord with sea cage trout farms. Aquatic Microbial Ecology, 21, 73-84. doi:10.3354/ame021073 es_ES
dc.description.references Chung, I.-K., Kang, Y.-H., Yarish, C., George, P. K., & Lee, J.-A. (2002). Application of Seaweed Cultivation to the Bioremediation of Nutrient-Rich Effluent. ALGAE, 17(3), 187-194. doi:10.4490/algae.2002.17.3.187 es_ES
dc.description.references Cromey, C. J., Nickell, T. D., & Black, K. D. (2002). DEPOMOD—modelling the deposition and biological effects of waste solids from marine cage farms. Aquaculture, 214(1-4), 211-239. doi:10.1016/s0044-8486(02)00368-x es_ES
dc.description.references Cugier, P., Struski, C., Blanchard, M., Mazurié, J., Pouvreau, S., Olivier, F., … Thiébaut, E. (2010). Assessing the role of benthic filter feeders on phytoplankton production in a shellfish farming site: Mont Saint Michel Bay, France. Journal of Marine Systems, 82(1-2), 21-34. doi:10.1016/j.jmarsys.2010.02.013 es_ES
dc.description.references Davies, I. M., McHenery, J. G., & Rae, G. H. (1997). Environmental risk from dissolved ivermectin to marine organisms. Aquaculture, 158(3-4), 263-275. doi:10.1016/s0044-8486(97)00209-3 es_ES
dc.description.references Dean, R. J., Shimmield, T. M., & Black, K. D. (2007). Copper, zinc and cadmium in marine cage fish farm sediments: An extensive survey. Environmental Pollution, 145(1), 84-95. doi:10.1016/j.envpol.2006.03.050 es_ES
dc.description.references Delgado, O., Ruiz, J., Pérez, M., Romero, J., & Ballesteros, E. (1999). Effects of fish farming on seagrass (Posidonia oceanica) in a Mediterranean bay: seagrass decline after organic loading cessation. Oceanologica Acta, 22(1), 109-117. doi:10.1016/s0399-1784(99)80037-1 es_ES
dc.description.references Dell’Anno, A., Mei, M. ., Pusceddu, A., & Danovaro, R. (2002). Assessing the trophic state and eutrophication of coastal marine systems: a new approach based on the biochemical composition of sediment organic matter. Marine Pollution Bulletin, 44(7), 611-622. doi:10.1016/s0025-326x(01)00302-2 es_ES
dc.description.references Ferrón, S., Ortega, T., & Forja, J. M. (2009). Benthic fluxes in a tidal salt marsh creek affected by fish farm activities: Río San Pedro (Bay of Cádiz, SW Spain). Marine Chemistry, 113(1-2), 50-62. doi:10.1016/j.marchem.2008.12.002 es_ES
dc.description.references Garren, M., Smriga, S., & Azam, F. (2008). Gradients of coastal fish farm effluents and their effect on coral reef microbes. Environmental Microbiology, 10(9), 2299-2312. doi:10.1111/j.1462-2920.2008.01654.x es_ES
dc.description.references Holmer, M., & Kristensen, E. (1992). Impact of marine fish cage farming on metabolism and sulfate reduction of underlying sediments. Marine Ecology Progress Series, 80, 191-201. doi:10.3354/meps080191 es_ES
dc.description.references Holmer, M., Wildish, D., & Hargrave, B. (s. f.). Organic Enrichment from Marine Finfish Aquaculture and Effects on Sediment Biogeochemical Processes. Environmental Effects of Marine Finfish Aquaculture, 181-206. doi:10.1007/b136010 es_ES
dc.description.references Huang, Y., Hsieh, H., Huang, S., Meng, P., Chen, Y., Keshavmurthy, S., … Chen, C. (2011). Nutrient enrichment caused by marine cage culture and its influence on subtropical coral communities in turbid waters. Marine Ecology Progress Series, 423, 83-93. doi:10.3354/meps08944 es_ES
dc.description.references Johansson, O., & Wedborg, M. (1980). The ammonia-ammonium equilibrium in seawater at temperatures between 5 and 25�C. Journal of Solution Chemistry, 9(1), 37-44. doi:10.1007/bf00650135 es_ES
dc.description.references Johansson, D., Juell, J.-E., Oppedal, F., Stiansen, J.-E., & Ruohonen, K. (2007). The influence of the pycnocline and cage resistance on current flow, oxygen flux and swimming behaviour of Atlantic salmon (Salmo salar L.) in production cages. Aquaculture, 265(1-4), 271-287. doi:10.1016/j.aquaculture.2006.12.047 es_ES
dc.description.references Juell, J.-E., & Fosseidengen, J. E. (2004). Use of artificial light to control swimming depth and fish density of Atlantic salmon (Salmo salar) in production cages. Aquaculture, 233(1-4), 269-282. doi:10.1016/j.aquaculture.2003.10.026 es_ES
dc.description.references Justić, D., Rabalais, N. N., Turner, R. E., & Dortch, Q. (1995). Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 40(3), 339-356. doi:10.1016/s0272-7714(05)80014-9 es_ES
dc.description.references Karakassis, I., Tsapakis, M., & Hatziyanni, E. (1998). Seasonal variability in sediment profiles beneath fish farm cages in the Mediterranean. Marine Ecology Progress Series, 162, 243-252. doi:10.3354/meps162243 es_ES
dc.description.references Karakassis, I. (2000). Impact of cage farming of fish on the seabed in three Mediterranean coastal areas. ICES Journal of Marine Science, 57(5), 1462-1471. doi:10.1006/jmsc.2000.0925 es_ES
dc.description.references Basaran, A. K., Aksu, M., & Egemen, O. (2009). Impacts of the fish farms on the water column nutrient concentrations and accumulation of heavy metals in the sediments in the eastern Aegean Sea (Turkey). Environmental Monitoring and Assessment, 162(1-4), 439-451. doi:10.1007/s10661-009-0808-x es_ES
dc.description.references La Rosa, T., Mirto, S., Favaloro, E., Savona, B., Sarà, G., Danovaro, R., & Mazzola, A. (2002). Impact on the water column biogeochemistry of a Mediterranean mussel and fish farm. Water Research, 36(3), 713-721. doi:10.1016/s0043-1354(01)00274-3 es_ES
dc.description.references Maldonado, M., Carmona, M. C., Echeverría, Y., & Riesgo, A. (2005). The environmental impact of Mediterranean cage fish farms at semi-exposed locations: does it need a re-assessment? Helgoland Marine Research, 59(2), 121-135. doi:10.1007/s10152-004-0211-5 es_ES
dc.description.references Mantzavrakos, E., Kornaros, M., Lyberatos, G., & Kaspiris, P. (2007). Impacts of a marine fish farm in Argolikos Gulf (Greece) on the water column and the sediment. Desalination, 210(1-3), 110-124. doi:10.1016/j.desal.2006.05.037 es_ES
dc.description.references Martins, C. I. M., Galhardo, L., Noble, C., Damsgård, B., Spedicato, M. T., Zupa, W., … Kristiansen, T. (2011). Behavioural indicators of welfare in farmed fish. Fish Physiology and Biochemistry, 38(1), 17-41. doi:10.1007/s10695-011-9518-8 es_ES
dc.description.references Morata, T., Sospedra, J., Falco, S., & Rodilla, M. (2012). Exchange of nutrients and oxygen across the sediment–water interface below a Sparus aurata marine fish farm in the north-western Mediterranean Sea. Journal of Soils and Sediments, 12(10), 1623-1632. doi:10.1007/s11368-012-0581-2 es_ES
dc.description.references Murray L. Bulling M. Mayor D. Sanz-Lázaro C. Paton G. Killham K. Sosal M. 2008 Interactive effects of biodiversity, copper and a chemotherapeutant on marine benthic function Proceedings of the World Conference on Marine Biodiversity (MARBEF) Valencia, Spain es_ES
dc.description.references Nizzoli, D., Bartoli, M., & Viaroli, P. (2007). Oxygen and ammonium dynamics during a farming cycle of the bivalve Tapes philippinarum. Hydrobiologia, 587(1), 25-36. doi:10.1007/s10750-007-0683-9 es_ES
dc.description.references Olivos-Ortiz, A. (2002). Continental runoff of nutrients and their possible influence over stoichiometrical relations (DIN:P:Si) in the Northwest Mediterranean waters. Ciencias Marinas, 28(4), 393-406. doi:10.7773/cm.v28i4.235 es_ES
dc.description.references Olsen L.M. Holmer M. Olsen Y. 2008 Perspectives of nutrient emission from fish aquaculture in coastal waters. Literature review with evaluated state of knowledge 87 es_ES
dc.description.references Oppedal, F., Juell, J.-E., & Johansson, D. (2007). Thermo- and photoregulatory swimming behaviour of caged Atlantic salmon: Implications for photoperiod management and fish welfare. Aquaculture, 265(1-4), 70-81. doi:10.1016/j.aquaculture.2007.01.050 es_ES
dc.description.references Pinedo, S., García, M., Satta, M. P., Torres, M. de, & Ballesteros, E. (2007). Rocky-shore communities as indicators of water quality: A case study in the Northwestern Mediterranean. Marine Pollution Bulletin, 55(1-6), 126-135. doi:10.1016/j.marpolbul.2006.08.044 es_ES
dc.description.references Porrello, S., Tomassetti, P., Manzueto, L., Finoia, M. G., Persia, E., Mercatali, I., & Stipa, P. (2005). The influence of marine cages on the sediment chemistry in the Western Mediterranean Sea. Aquaculture, 249(1-4), 145-158. doi:10.1016/j.aquaculture.2005.02.042 es_ES
dc.description.references Rosenberg, R. (2001). Marine benthic faunal successional stages and related sedimentary activity. Scientia Marina, 65(S2), 107-119. doi:10.3989/scimar.2001.65s2107 es_ES
dc.description.references Sakamaki, T., Nishimura, O., & Sudo, R. (2006). Tidal time-scale variation in nutrient flux across the sediment–water interface of an estuarine tidal flat. Estuarine, Coastal and Shelf Science, 67(4), 653-663. doi:10.1016/j.ecss.2006.01.005 es_ES
dc.description.references Sanz-Lázaro, C., & Marín, A. (2011). Diversity Patterns of Benthic Macrofauna Caused by Marine Fish Farming. Diversity, 3(2), 176-199. doi:10.3390/d3020176 es_ES
dc.description.references Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M., Vaqué, D., & Zingone, A. (2010). Plankton in the open Mediterranean Sea: a review. Biogeosciences, 7(5), 1543-1586. doi:10.5194/bg-7-1543-2010 es_ES
dc.description.references Teasdale, P. R., Minett, A. I., Dixon, K., Lewis, T. W., & Batley, G. E. (1998). Practical improvements for redox potential (EH) measurements and the application of a multiple-electrode redox probe (MERP) for characterising sediment in situ. Analytica Chimica Acta, 367(1-3), 201-213. doi:10.1016/s0003-2670(98)00171-8 es_ES
dc.description.references Vila, M., Garcés, E., Masó, M., & Camp, J. (2001). Is the distribution of the toxic dinoflagellate Alexandrium catenella expanding along the NW Mediterranean coast? Marine Ecology Progress Series, 222, 73-83. doi:10.3354/meps222073 es_ES
dc.description.references Vita, R., & Marin, A. (2007). Environmental impact of capture-based bluefin tuna aquaculture on benthic communities in the western Mediterranean. Aquaculture Research, 38(4), 331-339. doi:10.1111/j.1365-2109.2007.01649.x es_ES
dc.description.references Wajsbrot, N., Gasith, A., Krom, M. D., & Popper, D. M. (1991). Acute toxicity of ammonia to juvenile gilthead seabream Sparus aurata under reduced oxygen levels. Aquaculture, 92, 277-288. doi:10.1016/0044-8486(91)90029-7 es_ES
dc.description.references Wu, R. S. . (2002). Hypoxia: from molecular responses to ecosystem responses. Marine Pollution Bulletin, 45(1-12), 35-45. doi:10.1016/s0025-326x(02)00061-9 es_ES
dc.description.references Yucel-Gier, G., Kucuksezgin, F., & Kocak, F. (2007). Effects of fish farming on nutrients and benthic community structure in the Eastern Aegean (Turkey). Aquaculture Research, 38(3), 256-267. doi:10.1111/j.1365-2109.2007.01661.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem