García Ariza, AP.; Rubio Arjona, L. (2011). Computing the closest positive definite correlation matrix for experimental MIMO cannel analysis. IEEE Communications Letters. 15(10):1038-1040. doi:10.1109/LCOMM.2011.080811.102574
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37904
Title:
|
Computing the closest positive definite correlation matrix for experimental MIMO cannel analysis
|
Author:
|
García Ariza, Alexis Paolo
Rubio Arjona, Lorenzo
|
UPV Unit:
|
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
|
Issued date:
|
|
Abstract:
|
Under realistic propagation conditions in multiple-input-multiple-output (MIMO) wireless channels, some experimental (measured) full-spatial-correlation (FSC) MIMO channel matrices may not be positive definite, especially ...[+]
Under realistic propagation conditions in multiple-input-multiple-output (MIMO) wireless channels, some experimental (measured) full-spatial-correlation (FSC) MIMO channel matrices may not be positive definite, especially when the number of antennas elements increases. In this letter, an enhancement technique to solve the problem of non-positiveness for large experimental FSC matrices is proposed. This technique, based on the alternating-projection (AP) method, computes the closest positive definite matrix to the experimental FSC matrix preserving its covariance structure. The proposed technique is useful to evaluate the performance of large array MIMO systems under realistic conditions, allowing the Cholesky factorization of FSC matrices, which is needed for synthetic channel generation. © 2006 IEEE.
[-]
|
Subjects:
|
Alternating projection method
,
Cholesky factorization
,
Correlation matrices
,
Eigenvalues
,
MIMO
,
Positive definite matrices
,
Synthetic MIMO channels
,
Wireless channels
,
Cholesky factorizations
,
Positive-definite matrices
,
Covariance matrix
,
Eigenvalues and eigenfunctions
,
Factorization
,
MIMO systems
|
Copyrigths:
|
Cerrado |
Source:
|
IEEE Communications Letters. (issn:
1089-7798
)
|
DOI:
|
10.1109/LCOMM.2011.080811.102574
|
Publisher:
|
Institute of Electrical and Electronics Engineers (IEEE)
|
Publisher version:
|
http://dx.doi.org/10.1109/LCOMM.2011.080811.102574
|
Project ID:
|
AlBan Programme
European Union [E04D044088CO]
Generalitat Valenciana, Spain [GV06/076]
|
Thanks:
|
This work was supported in part by the AlBan Programme, the European Union Programme of High Level Scholarships for Latin America, scholarship No. E04D044088CO, and in part by the Research Support Programme of the Generalitat ...[+]
This work was supported in part by the AlBan Programme, the European Union Programme of High Level Scholarships for Latin America, scholarship No. E04D044088CO, and in part by the Research Support Programme of the Generalitat Valenciana (Project No. GV06/076), Spain.
[-]
|
Type:
|
Artículo
|