- -

Dynamic modeling of DC-DC converters with peak current control in double-stage photovoltaic grid-connected inverters

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Dynamic modeling of DC-DC converters with peak current control in double-stage photovoltaic grid-connected inverters

Show full item record

Garcerá Sanfeliú, G.; González Medina, R.; Figueres Amorós, E.; Sandía Paredes, J. (2012). Dynamic modeling of DC-DC converters with peak current control in double-stage photovoltaic grid-connected inverters. International Journal of Circuit Theory and Applications. 40(8):793-813. https://doi.org/10.1002/cta.756

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/38114

Files in this item

Item Metadata

Title: Dynamic modeling of DC-DC converters with peak current control in double-stage photovoltaic grid-connected inverters
Author: Garcerá Sanfeliú, Gabriel González Medina, Raúl Figueres Amorós, Emilio Sandía Paredes, Jesús
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Grupo de Sistemas Electrónicos Industriales
Issued date:
Abstract:
In photovoltaic (PV) double-stage grid-connected inverters a high-frequency DC-DC isolation and voltage step-up stage is commonly used between the panel and the grid-connected inverter. This paper is focused on the modeling ...[+]
Subjects: Current mode control , DC-DC power conversion , Inverters , Modeling , Photovoltaic power systems , Constant voltage , Control loop , Discontinuous conduction mode , External control , Flyback , Frequency response measurement , Full-bridge , Grid connected inverters , High frequency HF , Maximum Power Point Tracking , Modeling and control , Output voltages , Overall control structure , Peak current control , Peak current mode control , Photovoltaic , PV panel , Single-phase inverters , Small signal model , Time response , Voltage reference , DC-DC converters , Frequency response , HVDC power transmission , Models , Photovoltaic cells , Sensitivity analysis , Electric inverters
Copyrigths: Reserva de todos los derechos
Source:
International Journal of Circuit Theory and Applications. (issn: 0098-9886 )
DOI: 10.1002/cta.756
Publisher:
Wiley
Publisher version: http://onlinelibrary.wiley.com/doi/10.1002/cta.756/abstract;jsessionid=64A7DB6D8CEF48D2EE19BA570A91F122.f02t03
Project ID:
info:eu-repo/grantAgreement/MICINN//ENE2009-13998-C02-02/ES/Estructuras Flexibles De Control De Convertidores Electronicos Para Procesado E Integracion De Energias Renovables En Microrredes/
Thanks:
This work was supported by the Spanish Ministry of Science and Innovation (MICINN) under grant ENE2009-13998-C02-02. The company AUSTRIAMICROSYSTEMS co-financed this project.
Type: Artículo

References

Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galvan, E., PortilloGuisado, R. C., Prats, M. A. M., … Moreno-Alfonso, N. (2006). Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Transactions on Industrial Electronics, 53(4), 1002-1016. doi:10.1109/tie.2006.878356

Kjaer, S. B., Pedersen, J. K., & Blaabjerg, F. (2005). A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules. IEEE Transactions on Industry Applications, 41(5), 1292-1306. doi:10.1109/tia.2005.853371

Ridley, R. B. (1991). A new, continuous-time model for current-mode control (power convertors). IEEE Transactions on Power Electronics, 6(2), 271-280. doi:10.1109/63.76813 [+]
Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galvan, E., PortilloGuisado, R. C., Prats, M. A. M., … Moreno-Alfonso, N. (2006). Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Transactions on Industrial Electronics, 53(4), 1002-1016. doi:10.1109/tie.2006.878356

Kjaer, S. B., Pedersen, J. K., & Blaabjerg, F. (2005). A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules. IEEE Transactions on Industry Applications, 41(5), 1292-1306. doi:10.1109/tia.2005.853371

Ridley, R. B. (1991). A new, continuous-time model for current-mode control (power convertors). IEEE Transactions on Power Electronics, 6(2), 271-280. doi:10.1109/63.76813

Femia, N., Petrone, G., Spagnuolo, G., & Vitelli, M. (2005). Optimization of Perturb and Observe Maximum Power Point Tracking Method. IEEE Transactions on Power Electronics, 20(4), 963-973. doi:10.1109/tpel.2005.850975

Hua, C., & Lin, J. (2004). A modified tracking algorithm for maximum power tracking of solar array. Energy Conversion and Management, 45(6), 911-925. doi:10.1016/s0196-8904(03)00193-6

Tan, Y. T., Kirschen, D. S., & Jenkins, N. (2004). A Model of PV Generation Suitable for Stability Analysis. IEEE Transactions on Energy Conversion, 19(4), 748-755. doi:10.1109/tec.2004.827707

Femia, N., Petrone, G., Spagnuolo, G., & Vitelli, M. (2009). A Technique for Improving P&O MPPT Performances of Double-Stage Grid-Connected Photovoltaic Systems. IEEE Transactions on Industrial Electronics, 56(11), 4473-4482. doi:10.1109/tie.2009.2029589

Chiu, H.-J., Huang, H.-M., Yang, H.-T., & Cheng, S.-J. (2008). An improved single-stage Flyback PFC converter for high-luminance lighting LED lamps. International Journal of Circuit Theory and Applications, 36(2), 205-210. doi:10.1002/cta.404

Chiu, H.-J., Yao, C.-J., & Lo, Y.-K. (2009). A DC/DC converter topology for renewable energy systems. International Journal of Circuit Theory and Applications, 37(3), 485-495. doi:10.1002/cta.475

Martins DC Demonti R Photovoltaic Energy Processing for Utility Connected System 1292 1296 10.1109/IECON.2001.975968

www.focus.ti.com/lit/ml/slup127/slup127.pdf

2003 http://www.fairchildsemi.com

Esram, T., & Chapman, P. L. (2007). Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. IEEE Transactions on Energy Conversion, 22(2), 439-449. doi:10.1109/tec.2006.874230

Liserre, M., Blaabjerg, F., & Hansen, S. (2005). Design and Control of an LCL-Filter-Based Three-Phase Active Rectifier. IEEE Transactions on Industry Applications, 41(5), 1281-1291. doi:10.1109/tia.2005.853373

Liserre, M., Teodorescu, R., & Blaabjerg, F. (2006). Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Transactions on Power Electronics, 21(1), 263-272. doi:10.1109/tpel.2005.861185

Figueres, E., Garcera, G., Sandia, J., Gonzalez-Espin, F., & Rubio, J. C. (2009). Sensitivity Study of the Dynamics of Three-Phase Photovoltaic Inverters With an LCL Grid Filter. IEEE Transactions on Industrial Electronics, 56(3), 706-717. doi:10.1109/tie.2008.2010175

Ciobotaru M Teodorescu R Blaabjerg F Control of single-stage single-phase PV inverter P.1 P.10 10.1109/EPE.2005.219501

Zmood, D. N., & Holmes, D. G. (2003). Stationary frame current regulation of PWM inverters with zero steady-state error. IEEE Transactions on Power Electronics, 18(3), 814-822. doi:10.1109/tpel.2003.810852

Castilla, M., Miret, J., Matas, J., Garcia de Vicuna, L., & Guerrero, J. M. (2009). Control Design Guidelines for Single-Phase Grid-Connected Photovoltaic Inverters With Damped Resonant Harmonic Compensators. IEEE Transactions on Industrial Electronics, 56(11), 4492-4501. doi:10.1109/tie.2009.2017820

Timbus A Teodorescu R Blaabjerg F Liserre M Synchronization methods for three phase distributed power generation systems 2474 2481 10.1109/PESC.2005.1581980

Vorperian, V. (1990). Simplified analysis of PWM converters using model of PWM switch. II. Discontinuous conduction mode. IEEE Transactions on Aerospace and Electronic Systems, 26(3), 497-505. doi:10.1109/7.106127

Reatti A Balzani M PWM switch model of a buck-boost converter operated under discontinuous conduction mode 667 670 10.1109/MWSCAS.2005.1594189

Reatti, A., & Kazimierczuk, M. K. (2003). Small-signal model of PWM converters for discontinuous conduction mode and its application for boost converter. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 50(1), 65-73. doi:10.1109/tcsi.2002.805709

Lin, B.-R., Huang, C.-L., & Li, M.-Y. (2009). Novel interleaved ZVS converter with ripple current cancellation. International Journal of Circuit Theory and Applications, 37(3), 413-431. doi:10.1002/cta.480

MIDDLEBROOK, R. D. (1975). Measurement of loop gain in feedback systems†. International Journal of Electronics, 38(4), 485-512. doi:10.1080/00207217508920421

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record