- -

Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Timón Gómez, Alba es_ES
dc.contributor.author Proft ., Markus Hans es_ES
dc.contributor.author Pascual-Ahuir Giner, María Desamparados es_ES
dc.date.accessioned 2014-08-28T11:51:18Z
dc.date.available 2014-08-28T11:51:18Z
dc.date.issued 2013-11
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/39274
dc.description.abstract Mpc proteins are highly conserved from yeast to humans and are necessary for the uptake of pyruvate at the inner mitochondrial membrane, which is used for leucine and valine biosynthesis and as a fuel for respiration. Our analysis of the yeast MPC gene family suggests that amino acid biosynthesis, respiration rate and oxidative stress tolerance are regulated by changes in the Mpc protein composition of the mitochondria. Mpc2 and Mpc3 are highly similar but functionally different: Mpc2 is most abundant under fermentative non stress conditions and important for amino acid biosynthesis, while Mpc3 is the most abundant family member upon salt stress or when high respiration rates are required. Accordingly, expression of the MPC3 gene is highly activated upon NaCl stress or during the transition from fermentation to respiration, both types of regulation depend on the Hog1 MAP kinase. Overexpression experiments show that gain of Mpc2 function leads to a severe respiration defect and ROS accumulation, while Mpc3 stimulates respiration and enhances tolerance to oxidative stress. Our results identify the regulated mitochondrial pyruvate uptake as an important determinant of respiration rate and stress resistance. es_ES
dc.description.sponsorship This work was supported by Ministerio de Economia y Competitividad grant BFU2011-23326 to M.P.; A.T.-G. was supported by a JAE predoctoral grant from Consejo Superior de Investigaciones Cientificas. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mitochondria es_ES
dc.subject Yeast es_ES
dc.subject Cellular Stress Response es_ES
dc.subject Biosynthesis es_ES
dc.subject Pyruvate es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0079405
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2011-23326/ES/REGULACION DE LA CROMATINA Y DE LA ESTRUCTURA MITOCONDRIAL EN RESPUESTA A ESTRES OSMOTICO/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Timón Gómez, A.; Proft ., MH.; Pascual-Ahuir Giner, MD. (2013). Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast. PLoS ONE. 8(11):1-9. doi:10.1371/journal.pone.0079405 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1371/journal.pone.0079405 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 254024
dc.identifier.pmid 24244496 en_EN
dc.identifier.pmcid PMC3828368 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Consejo Superior de Investigaciones Científicas
dc.description.references Murphy, M. P. (2008). How mitochondria produce reactive oxygen species. Biochemical Journal, 417(1), 1-13. doi:10.1042/bj20081386 es_ES
dc.description.references Pan, Y. (2011). Mitochondria, reactive oxygen species, and chronological aging: A message from yeast. Experimental Gerontology, 46(11), 847-852. doi:10.1016/j.exger.2011.08.007 es_ES
dc.description.references Perrone, G. G., Tan, S.-X., & Dawes, I. W. (2008). Reactive oxygen species and yeast apoptosis. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1783(7), 1354-1368. doi:10.1016/j.bbamcr.2008.01.023 es_ES
dc.description.references Galdieri, L., Mehrotra, S., Yu, S., & Vancura, A. (2010). Transcriptional Regulation in Yeast during Diauxic Shift and Stationary Phase. OMICS: A Journal of Integrative Biology, 14(6), 629-638. doi:10.1089/omi.2010.0069 es_ES
dc.description.references Broach, J. R. (2012). Nutritional Control of Growth and Development in Yeast. Genetics, 192(1), 73-105. doi:10.1534/genetics.111.135731 es_ES
dc.description.references Hedbacker, K. (2008). SNF1/AMPK pathways in yeast. Frontiers in Bioscience, 13(13), 2408. doi:10.2741/2854 es_ES
dc.description.references Martínez-Pastor, M., Proft, M., & Pascual-Ahuir, A. (2010). Adaptive Changes of the Yeast Mitochondrial Proteome in Response to Salt Stress. OMICS: A Journal of Integrative Biology, 14(5), 541-552. doi:10.1089/omi.2010.0020 es_ES
dc.description.references Pastor, M. M., Proft, M., & Pascual-Ahuir, A. (2009). Mitochondrial Function Is an Inducible Determinant of Osmotic Stress Adaptation in Yeast. Journal of Biological Chemistry, 284(44), 30307-30317. doi:10.1074/jbc.m109.050682 es_ES
dc.description.references Saito, H., & Posas, F. (2012). Response to Hyperosmotic Stress. Genetics, 192(2), 289-318. doi:10.1534/genetics.112.140863 es_ES
dc.description.references Ruiz-Roig, C., Noriega, N., Duch, A., Posas, F., & de Nadal, E. (2012). The Hog1 SAPK controls the Rtg1/Rtg3 transcriptional complex activity by multiple regulatory mechanisms. Molecular Biology of the Cell, 23(21), 4286-4296. doi:10.1091/mbc.e12-04-0289 es_ES
dc.description.references Bricker, D. K., Taylor, E. B., Schell, J. C., Orsak, T., Boutron, A., Chen, Y.-C., … Rutter, J. (2012). A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, Drosophila, and Humans. Science, 337(6090), 96-100. doi:10.1126/science.1218099 es_ES
dc.description.references Herzig, S., Raemy, E., Montessuit, S., Veuthey, J.-L., Zamboni, N., Westermann, B., … Martinou, J.-C. (2012). Identification and Functional Expression of the Mitochondrial Pyruvate Carrier. Science, 337(6090), 93-96. doi:10.1126/science.1218530 es_ES
dc.description.references Winzeler, E. A. (1999). Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 285(5429), 901-906. doi:10.1126/science.285.5429.901 es_ES
dc.description.references Ghaemmaghami, S., Huh, W.-K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., … Weissman, J. S. (2003). Global analysis of protein expression in yeast. Nature, 425(6959), 737-741. doi:10.1038/nature02046 es_ES
dc.description.references Alberti, S., Gitler, A. D., & Lindquist, S. (2007). A suite of Gateway®cloning vectors for high-throughput genetic analysis inSaccharomyces cerevisiae. Yeast, 24(10), 913-919. doi:10.1002/yea.1502 es_ES
dc.description.references Westermann, B., & Neupert, W. (2000). Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis inSaccharomyces cerevisiae. Yeast, 16(15), 1421-1427. doi:10.1002/1097-0061(200011)16:15<1421::aid-yea624>3.0.co;2-u es_ES
dc.description.references Hong, H.-Y., Yoo, G.-S., & Choi, J.-K. (2000). Direct Blue 71 staining of proteins bound to blotting membranes. Electrophoresis, 21(5), 841-845. doi:10.1002/(sici)1522-2683(20000301)21:5<841::aid-elps841>3.0.co;2-4 es_ES
dc.description.references Nakai, T., Yasuhara, T., Fujiki, Y., & Ohashi, A. (1995). Multiple genes, including a member of the AAA family, are essential for degradation of unassembled subunit 2 of cytochrome c oxidase in yeast mitochondria. Molecular and Cellular Biology, 15(8), 4441-4452. doi:10.1128/mcb.15.8.4441 es_ES
dc.description.references Boubekeur, S., Bunoust, O., Camougrand, N., Castroviejo, M., Rigoulet, M., & Guérin, B. (1999). A Mitochondrial Pyruvate Dehydrogenase Bypass in the YeastSaccharomyces cerevisiae. Journal of Biological Chemistry, 274(30), 21044-21048. doi:10.1074/jbc.274.30.21044 es_ES
dc.description.references Palmieri, L., Lasorsa, F. M., Iacobazzi, V., Runswick, M. J., Palmieri, F., & Walker, J. E. (1999). Identification of the mitochondrial carnitine carrier in Saccharomyces cerevisiae. FEBS Letters, 462(3), 472-476. doi:10.1016/s0014-5793(99)01555-0 es_ES
dc.description.references Martínez-Montañés, F., Pascual-Ahuir, A., & Proft, M. (2010). Toward a Genomic View of the Gene Expression Program Regulated by Osmostress in Yeast. OMICS: A Journal of Integrative Biology, 14(6), 619-627. doi:10.1089/omi.2010.0046 es_ES
dc.description.references Proft, M., Gibbons, F. D., Copeland, M., Roth, F. P., & Struhl, K. (2005). Genomewide Identification of Sko1 Target Promoters Reveals a Regulatory Network That Operates in Response to Osmotic Stress inSaccharomyces cerevisiae. Eukaryotic Cell, 4(8), 1343-1352. doi:10.1128/ec.4.8.1343-1352.2005 es_ES
dc.description.references Divakaruni, A. S., & Murphy, A. N. (2012). A Mitochondrial Mystery, Solved. Science, 337(6090), 41-43. doi:10.1126/science.1225601 es_ES
dc.description.references Smith, R. A. J., Hartley, R. C., Cochemé, H. M., & Murphy, M. P. (2012). Mitochondrial pharmacology. Trends in Pharmacological Sciences, 33(6), 341-352. doi:10.1016/j.tips.2012.03.010 es_ES
dc.description.references Poteet, E., Choudhury, G. R., Winters, A., Li, W., Ryou, M.-G., Liu, R., … Yang, S.-H. (2013). Reversing the Warburg Effect as a Treatment for Glioblastoma. Journal of Biological Chemistry, 288(13), 9153-9164. doi:10.1074/jbc.m112.440354 es_ES
dc.description.references Soga, T. (2013). Cancer metabolism: Key players in metabolic reprogramming. Cancer Science, 104(3), 275-281. doi:10.1111/cas.12085 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem