- -

Emergence and phylodynamics of Citrus tristeza virus in Sicily, Italy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Emergence and phylodynamics of Citrus tristeza virus in Sicily, Italy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Davino, Salvatore es_ES
dc.contributor.author Willemsen, Anouk es_ES
dc.contributor.author Panno. Stefano es_ES
dc.contributor.author Davino, Mario es_ES
dc.contributor.author Catara, Antonino es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.contributor.author Rubio, Luis es_ES
dc.date.accessioned 2014-08-28T12:00:39Z
dc.date.available 2014-08-28T12:00:39Z
dc.date.issued 2013-06
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/39275
dc.description.abstract [EN] Citrus tristeza virus (CTV) outbreaks were detected in Sicily island, Italy for the first time in 2002. To gain insight into the evolutionary forces driving the emergence and phylogeography of these CTV populations, we determined and analyzed the nucleotide sequences of the p20 gene from 108 CTV isolates collected from 2002 to 2009. Bayesian phylogenetic analysis revealed that mild and severe CTV isolates belonging to five different clades (lineages) were introduced in Sicily in 2002. Phylogeographic analysis showed that four lineages co-circulated in the main citrus growing area located in Eastern Sicily. However, only one lineage (composed of mild isolates) spread to distant areas of Sicily and was detected after 2007. No correlation was found between genetic variation and citrus host, indicating that citrus cultivars did not exert differential selective pressures on the virus. The genetic variation of CTV was not structured according to geographical location or sampling time, likely due to the multiple introduction events and a complex migration pattern with intense co- and recirculation of different lineages in the same area. The phylogenetic structure, statistical tests of neutrality and comparison of synonymous and nonsynonymous substitution rates suggest that weak negative selection and genetic drift following a rapid expansion may be the main causes of the CTV variability observed today in Sicily. Nonetheless, three adjacent amino acids at the p20 N-terminal region were found to be under positive selection, likely resulting from adaptation events. es_ES
dc.description.sponsorship A.W. and S.F.E. were supported by grant BFU2012-30805 from the Spanish Secretaria de Estado de Investigacion, Desarrollo e Innovacion and by a grant 22371 from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Maximum-likelihood es_ES
dc.subject Mosaic-virus es_ES
dc.subject Evolutionary dynamics es_ES
dc.subject Phylogenetic analyses es_ES
dc.subject Population-structure es_ES
dc.subject Molecular evolution es_ES
dc.subject Genetic-variation es_ES
dc.subject DNA polymorphism es_ES
dc.subject Cross-protection es_ES
dc.subject Host passage es_ES
dc.title Emergence and phylodynamics of Citrus tristeza virus in Sicily, Italy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0066700
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JTF//22371//Experimental evolution of genome architecture and complexity in RNA virus/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Davino, S.; Willemsen, A.; Panno. Stefano; Davino, M.; Catara, A.; Elena Fito, SF.; Rubio, L. (2013). Emergence and phylodynamics of Citrus tristeza virus in Sicily, Italy. PLoS ONE. 8:66700-66700. doi:10.1371/journal.pone.0066700 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1371/journal.pone.0066700 es_ES
dc.description.upvformatpinicio 66700 es_ES
dc.description.upvformatpfin 66700 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.relation.senia 260388
dc.identifier.pmid 23818960 en_EN
dc.identifier.pmcid PMC3688570 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder John Templeton Foundation
dc.description.references Domingo, E., & Holland, J. J. (1997). RNA VIRUS MUTATIONS AND FITNESS FOR SURVIVAL. Annual Review of Microbiology, 51(1), 151-178. doi:10.1146/annurev.micro.51.1.151 es_ES
dc.description.references Grenfell, B. T. (2004). Unifying the Epidemiological and Evolutionary Dynamics of Pathogens. Science, 303(5656), 327-332. doi:10.1126/science.1090727 es_ES
dc.description.references Moya, A., Holmes, E. C., & González-Candelas, F. (2004). The population genetics and evolutionary epidemiology of RNA viruses. Nature Reviews Microbiology, 2(4), 279-288. doi:10.1038/nrmicro863 es_ES
dc.description.references Gray, R. R., Tatem, A. J., Lamers, S., Hou, W., Laeyendecker, O., Serwadda, D., … Salemi, M. (2009). Spatial phylodynamics of HIV-1 epidemic emergence in east Africa. AIDS, 23(14), F9-F17. doi:10.1097/qad.0b013e32832faf61 es_ES
dc.description.references Holmes, E. C. (2008). Evolutionary History and Phylogeography of Human Viruses. Annual Review of Microbiology, 62(1), 307-328. doi:10.1146/annurev.micro.62.081307.162912 es_ES
dc.description.references Pybus, O. G., Suchard, M. A., Lemey, P., Bernardin, F. J., Rambaut, A., Crawford, F. W., … Delwart, E. L. (2012). Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proceedings of the National Academy of Sciences, 109(37), 15066-15071. doi:10.1073/pnas.1206598109 es_ES
dc.description.references Talbi, C., Lemey, P., Suchard, M. A., Abdelatif, E., Elharrak, M., Jalal, N., … Bourhy, H. (2010). Phylodynamics and Human-Mediated Dispersal of a Zoonotic Virus. PLoS Pathogens, 6(10), e1001166. doi:10.1371/journal.ppat.1001166 es_ES
dc.description.references Vijaykrishna, D., Bahl, J., Riley, S., Duan, L., Zhang, J. X., Chen, H., … Guan, Y. (2008). Evolutionary Dynamics and Emergence of Panzootic H5N1 Influenza Viruses. PLoS Pathogens, 4(9), e1000161. doi:10.1371/journal.ppat.1000161 es_ES
dc.description.references Gómez, P., Sempere, R. N., Aranda, M. A., & Elena, S. F. (2012). Phylodynamics of Pepino mosaic virus in Spain. European Journal of Plant Pathology, 134(3), 445-449. doi:10.1007/s10658-012-0019-0 es_ES
dc.description.references Lefeuvre, P., Martin, D. P., Harkins, G., Lemey, P., Gray, A. J. A., Meredith, S., … Heydarnejad, J. (2010). The Spread of Tomato Yellow Leaf Curl Virus from the Middle East to the World. PLoS Pathogens, 6(10), e1001164. doi:10.1371/journal.ppat.1001164 es_ES
dc.description.references TOMITAKA, Y., & OHSHIMA, K. (2006). A phylogeographical study of the Turnip mosaic virus population in East Asia reveals an ‘emergent’ lineage in Japan. Molecular Ecology, 15(14), 4437-4457. doi:10.1111/j.1365-294x.2006.03094.x es_ES
dc.description.references Wu, B., Blanchard-Letort, A., Liu, Y., Zhou, G., Wang, X., & Elena, S. F. (2011). Dynamics of Molecular Evolution and Phylogeography of Barley yellow dwarf virus-PAV. PLoS ONE, 6(2), e16896. doi:10.1371/journal.pone.0016896 es_ES
dc.description.references MORENO, P., AMBRÓS, S., ALBIACH-MARTÍ, M. R., GUERRI, J., & PEÑA, L. (2008). Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Molecular Plant Pathology, 9(2), 251-268. doi:10.1111/j.1364-3703.2007.00455.x es_ES
dc.description.references Tatineni, S., Robertson, C. J., Garnsey, S. M., & Dawson, W. O. (2011). A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proceedings of the National Academy of Sciences, 108(42), 17366-17371. doi:10.1073/pnas.1113227108 es_ES
dc.description.references Folimonova, S. Y. (2012). Superinfection Exclusion Is an Active Virus-Controlled Function That Requires a Specific Viral Protein. Journal of Virology, 86(10), 5554-5561. doi:10.1128/jvi.00310-12 es_ES
dc.description.references Bar-Joseph, M., Marcus, R., & Lee, R. F. (1989). The Continuous Challenge of Citrus Tristeza Virus Control. Annual Review of Phytopathology, 27(1), 291-316. doi:10.1146/annurev.py.27.090189.001451 es_ES
dc.description.references Davino, S., Rubio, L., & Davino, M. (2005). Molecular analysis suggests that recent Citrus tristeza virus outbreaks in Italy were originated by at least two independent introductions. European Journal of Plant Pathology, 111(3), 289-293. doi:10.1007/s10658-003-2815-z es_ES
dc.description.references Albiach-Marti, M. R., Mawassi, M., Gowda, S., Satyanarayana, T., Hilf, M. E., Shanker, S., … Dawson, W. O. (2000). Sequences of Citrus Tristeza Virus Separated in Time and Space Are Essentially Identical. Journal of Virology, 74(15), 6856-6865. doi:10.1128/jvi.74.15.6856-6865.2000 es_ES
dc.description.references Rubio, L., Ayllon, M. A., Kong, P., Fernandez, A., Polek, M., Guerri, J., … Falk, B. W. (2001). Genetic Variation of Citrus Tristeza Virus Isolates from California and Spain: Evidence for Mixed Infections and Recombination. Journal of Virology, 75(17), 8054-8062. doi:10.1128/jvi.75.17.8054-8062.2001 es_ES
dc.description.references Silva, G., Marques, N., & Nolasco, G. (2011). The evolutionary rate of citrus tristeza virus ranks among the rates of the slowest RNA viruses. Journal of General Virology, 93(2), 419-429. doi:10.1099/vir.0.036574-0 es_ES
dc.description.references Mawassi, M., Mietkiewska, E., Gofman, R., Yang, G., & Bar-Joseph, M. (1996). Unusual Sequence Relationships Between Two Isolates of Citrus Tristeza Virus. Journal of General Virology, 77(9), 2359-2364. doi:10.1099/0022-1317-77-9-2359 es_ES
dc.description.references Vives, M. C., Dawson, W. O., Flores, R., L√≥pez, C., Albiach-Mart√≠, M. R., Rubio, L., … Moreno, P. (1999). The complete genome sequence of the major component of a mild citrus tristeza virus isolate. Journal of General Virology, 80(3), 811-816. doi:10.1099/0022-1317-80-3-811 es_ES
dc.description.references Martín, S., Elena, S. F., Guerri, J., Moreno, P., Sambade, A., Rubio, L., … Vives, M. C. (2009). Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. Journal of General Virology, 90(6), 1527-1538. doi:10.1099/vir.0.008193-0 es_ES
dc.description.references Vives, M. C., Rubio, L., Sambade, A., Mirkov, T. E., Moreno, P., & Guerri, J. (2005). Evidence of multiple recombination events between two RNA sequence variants within a Citrus tristeza virus isolate. Virology, 331(2), 232-237. doi:10.1016/j.virol.2004.10.037 es_ES
dc.description.references D’Urso, F., Sambade, A., Moya, A., Guerri, J., & Moreno, P. (2003). Variation of haplotype distributions of two genomic regions of Citrus tristeza virus populations from eastern Spain. Molecular Ecology, 12(2), 517-526. doi:10.1046/j.1365-294x.2000.01747.x es_ES
dc.description.references Sambade, A., Rubio, L., Garnsey, S. M., Costa, N., Muller, G. W., Peyrou, M., … Moreno, P. (2002). Comparison of viral RNA populations of pathogenically distinct isolates of Citrus tristeza virus : application to monitoring cross-protection. Plant Pathology, 51(3), 257-265. doi:10.1046/j.1365-3059.2002.00720.x es_ES
dc.description.references Reed, J. C., Kasschau, K. D., Prokhnevsky, A. I., Gopinath, K., Pogue, G. P., Carrington, J. C., & Dolja, V. V. (2003). Suppressor of RNA silencing encoded by Beet yellows virus. Virology, 306(2), 203-209. doi:10.1016/s0042-6822(02)00051-x es_ES
dc.description.references Folimonova, S. Y., Robertson, C. J., Shilts, T., Folimonov, A. S., Hilf, M. E., Garnsey, S. M., & Dawson, W. O. (2009). Infection with Strains of Citrus Tristeza Virus Does Not Exclude Superinfection by Other Strains of the Virus. Journal of Virology, 84(3), 1314-1325. doi:10.1128/jvi.02075-09 es_ES
dc.description.references Kong, P., Rubio, L., Polek, M., & Falk, B. W. (2000). Virus Genes, 21(3), 139-145. doi:10.1023/a:1008198311398 es_ES
dc.description.references Powell, C. A., Pelosi, R. R., Rundell, P. A., & Cohen, M. (2003). Breakdown of Cross-Protection of Grapefruit from Decline-Inducing Isolates of Citrus tristeza virus Following Introduction of the Brown Citrus Aphid. Plant Disease, 87(9), 1116-1118. doi:10.1094/pdis.2003.87.9.1116 es_ES
dc.description.references Roistacher C, Dodds J. (1993) Failure of 100 mild Citrus tristeza virus isolates from california to cross protect against a challenge by severe sweet orange stem pitting isolates. Proc 12th Conf IOCV: 100–107. es_ES
dc.description.references Ayllón, M. A., Rubio, L., Sentandreu, V., Moya, A., Guerri, J., & Moreno, P. (2006). Variations in Two Gene Sequences of Citrus Tristeza Virus after Host Passage. Virus Genes, 32(2), 119-128. doi:10.1007/s11262-005-6866-4 es_ES
dc.description.references Ayllón, M. A., Rubio, L., Moya, A., Guerri, J., & Moreno, P. (1999). The Haplotype Distribution of Two Genes of Citrus Tristeza Virus Is Altered after Host Change or Aphid Transmission. Virology, 255(1), 32-39. doi:10.1006/viro.1998.9566 es_ES
dc.description.references Sentandreu, V., Castro, J. A., Ayllón, M. A., Rubio, L., Guerri, J., González-Candelas, F., … Moya, A. (2005). Evolutionary analysis of genetic variation observed in citrus tristeza virus (CTV) after host passage. Archives of Virology, 151(5), 875-894. doi:10.1007/s00705-005-0683-x es_ES
dc.description.references Matos, L. A., Hilf, M. E., Cayetano, X. A., Feliz, A. O., Harper, S. J., & Folimonova, S. Y. (2013). Dramatic Change in Citrus tristeza virus Populations in the Dominican Republic. Plant Disease, 97(3), 339-345. doi:10.1094/pdis-05-12-0421-re es_ES
dc.description.references Davino, S., Davino, M., Sambade, A., Guardo, M., & Caruso, A. (2003). The First Citrus tristeza virus Outbreak Found in a Relevant Citrus Producing Area of Sicily, Italy. Plant Disease, 87(3), 314-314. doi:10.1094/pdis.2003.87.3.314a es_ES
dc.description.references RUBIO, L., AYLLONl, M. A., GUERRI, J., PAPPU, H., NIBLETT, C., & MORENO, P. (1996). Differentiation of citrus tristeza closterovirus (CTV) isolates by single-strand conformation polymorphism analysis of the coat protein gene. Annals of Applied Biology, 129(3), 479-489. doi:10.1111/j.1744-7348.1996.tb05770.x es_ES
dc.description.references Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404 es_ES
dc.description.references Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121 es_ES
dc.description.references Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H., & Frost, S. D. W. (2006). GARD: a genetic algorithm for recombination detection. Bioinformatics, 22(24), 3096-3098. doi:10.1093/bioinformatics/btl474 es_ES
dc.description.references Martin, D. P., Lemey, P., Lott, M., Moulton, V., Posada, D., & Lefeuvre, P. (2010). RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics, 26(19), 2462-2463. doi:10.1093/bioinformatics/btq467 es_ES
dc.description.references Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452. doi:10.1093/bioinformatics/btp187 es_ES
dc.description.references Kimura M. (1985) The neutral theory of molecular evolution. Cambridge Univ Pr. es_ES
dc.description.references Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38(6), 1358. doi:10.2307/2408641 es_ES
dc.description.references Pond, S. L. K., & Frost, S. D. W. (2005). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics, 21(10), 2531-2533. doi:10.1093/bioinformatics/bti320 es_ES
dc.description.references Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. doi:10.1186/1471-2148-7-214 es_ES
dc.description.references Bielejec, F., Rambaut, A., Suchard, M. A., & Lemey, P. (2011). SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics, 27(20), 2910-2912. doi:10.1093/bioinformatics/btr481 es_ES
dc.description.references Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21), 2688-2690. doi:10.1093/bioinformatics/btl446 es_ES
dc.description.references Ott M, Zola J, Stamatakis A, Aluru S. (2007) Large-scale maximum likelihood-based phylogenetic analysis on the IBM BlueGene/L. Proceedings of the 19th ACM/IEEE conference on Supercomputing. Article No. 4. es_ES
dc.description.references Shimodaira, H., & Hasegawa, M. (1999). Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Molecular Biology and Evolution, 16(8), 1114-1116. doi:10.1093/oxfordjournals.molbev.a026201 es_ES
dc.description.references Soria-Carrasco, V., Talavera, G., Igea, J., & Castresana, J. (2007). The K tree score: quantification of differences in the relative branch length and topology of phylogenetic trees. Bioinformatics, 23(21), 2954-2956. doi:10.1093/bioinformatics/btm466 es_ES
dc.description.references Puigbo, P., Garcia-Vallve, S., & McInerney, J. O. (2007). TOPD/FMTS: a new software to compare phylogenetic trees. Bioinformatics, 23(12), 1556-1558. doi:10.1093/bioinformatics/btm135 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem