- -

Excitation power dependence of the Purcell effect in photonic crystalmicrocavity lasers with quantum wires

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Excitation power dependence of the Purcell effect in photonic crystalmicrocavity lasers with quantum wires

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Canet-Ferrer, J. es_ES
dc.contributor.author Prieto, I. es_ES
dc.contributor.author Muñoz Matutano, Guillermo es_ES
dc.contributor.author Martínez, L.J. es_ES
dc.contributor.author Muñoz-Camuniez, L.E. es_ES
dc.contributor.author Llorens, J.M.. es_ES
dc.contributor.author Fuster, D. es_ES
dc.contributor.author Alén, B. es_ES
dc.contributor.author González, Y. es_ES
dc.contributor.author González, L. es_ES
dc.contributor.author Postigo, P.A. es_ES
dc.contributor.author Martínez-Pastor, J.P. es_ES
dc.date.accessioned 2014-09-29T12:47:57Z
dc.date.available 2014-09-29T12:47:57Z
dc.date.issued 2013-05-20
dc.identifier.issn 0003-6951
dc.identifier.uri http://hdl.handle.net/10251/40405
dc.description.abstract [EN] The Purcell effect dependence on the excitation power is studied in photonic crystal microcavity lasers embedding InAs/InP quantum wires. In the case of non-lasing modes, the Purcell effect has low dependence on the optical pumping, attributable to an exciton dynamics combining free and localized excitons. In the case of lasing modes, the influence of the stimulated emission makes ambiguous the determination of the Purcell factor. We have found that this ambiguity can be avoided by measuring the dependence of the decay time on the excitation power. These results provide insights in the determination of the Purcell factor in microcavity lasers. es_ES
dc.description.sponsorship We want to acknowledge financial support from the Spanish MICINN through grants (Nos. S-0505-TIC-0191, TEC2008-06756-C03-01/-03, TEC2011-29045-C04-03, TEC2011-29120-C05-01/04, and CAM S2009ESP-1503). J.C.-F. thanks the Spanish MCI for his FPI grant (No. BES-2006-12300).
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Continuous-Wave Operation es_ES
dc.subject Room-Temperature es_ES
dc.subject Spontaneous Emission es_ES
dc.subject Microdisk Lasers es_ES
dc.subject Dot es_ES
dc.subject Nanocavity es_ES
dc.title Excitation power dependence of the Purcell effect in photonic crystalmicrocavity lasers with quantum wires es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4807439
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2008-06756-C03-01/ES/NANOESTRUCTURAS PARA DISPOSITIVOS FOTONICOS CUANTICOS INTEGRADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-29045-C04-03/ES/NANOESTRUCTURAS DE CRISTAL FOTONICO PARA DIODOS EMISORES DE LUZ BASADOS EN SILICIO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//BES-2006-12300/ES/BES-2006-12300/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-29120-C05-01/04/
dc.relation.projectID info:eu-repo/grantAgreement/CAM// S2009ESP-1503/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Canet-Ferrer, J.; Prieto, I.; Muñoz Matutano, G.; Martínez, L.; Muñoz-Camuniez, L.; Llorens, J.; Fuster, D.... (2013). Excitation power dependence of the Purcell effect in photonic crystalmicrocavity lasers with quantum wires. Applied Physics Letters. 102(20). https://doi.org/10.1063/1.4807439 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4807439 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 102 es_ES
dc.description.issue 20 es_ES
dc.relation.senia 255060
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Comunidad de Madrid
dc.description.references Gérard, J., Sermage, B., Gayral, B., Legrand, B., Costard, E., & Thierry-Mieg, V. (1998). Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity. Physical Review Letters, 81(5), 1110-1113. doi:10.1103/physrevlett.81.1110 es_ES
dc.description.references Englund, D., Fattal, D., Waks, E., Solomon, G., Zhang, B., Nakaoka, T., … Vučković, J. (2005). Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal. Physical Review Letters, 95(1). doi:10.1103/physrevlett.95.013904 es_ES
dc.description.references Munsch, M., Mosset, A., Auffèves, A., Seidelin, S., Poizat, J. P., Gérard, J.-M., … Senellart, P. (2009). Continuous-wave versus time-resolved measurements of Purcell factors for quantum dots in semiconductor microcavities. Physical Review B, 80(11). doi:10.1103/physrevb.80.115312 es_ES
dc.description.references Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H. M., Rupper, G., … Deppe, D. G. (2004). Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432(7014), 200-203. doi:10.1038/nature03119 es_ES
dc.description.references Badolato, A. (2005). Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes. Science, 308(5725), 1158-1161. doi:10.1126/science.1109815 es_ES
dc.description.references Hennessy, K., Badolato, A., Winger, M., Gerace, D., Atatüre, M., Gulde, S., … Imamoğlu, A. (2007). Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 445(7130), 896-899. doi:10.1038/nature05586 es_ES
dc.description.references Strauf, S. (2010). Towards efficient quantum sources. Nature Photonics, 4(3), 132-134. doi:10.1038/nphoton.2010.11 es_ES
dc.description.references Altug, H., Englund, D., & Vučković, J. (2006). Ultrafast photonic crystal nanocavity laser. Nature Physics, 2(7), 484-488. doi:10.1038/nphys343 es_ES
dc.description.references Azzini, S., Gerace, D., Galli, M., Sagnes, I., Braive, R., Lemaître, A., … Bajoni, D. (2011). Ultra-low threshold polariton lasing in photonic crystal cavities. Applied Physics Letters, 99(11), 111106. doi:10.1063/1.3638469 es_ES
dc.description.references Nozaki, K., Kita, S., & Baba, T. (2007). Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Optics Express, 15(12), 7506. doi:10.1364/oe.15.007506 es_ES
dc.description.references Strauf, S., Hennessy, K., Rakher, M. T., Choi, Y.-S., Badolato, A., Andreani, L. C., … Bouwmeester, D. (2006). Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers. Physical Review Letters, 96(12). doi:10.1103/physrevlett.96.127404 es_ES
dc.description.references Kippenberg, T. J., Spillane, S. M., & Vahala, K. J. (2004). Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Applied Physics Letters, 85(25), 6113-6115. doi:10.1063/1.1833556 es_ES
dc.description.references Arakawa, Y., & Sakaki, H. (1982). Multidimensional quantum well laser and temperature dependence of its threshold current. Applied Physics Letters, 40(11), 939-941. doi:10.1063/1.92959 es_ES
dc.description.references Kapon, E. (1992). Quantum wire lasers. Proceedings of the IEEE, 80(3), 398-410. doi:10.1109/5.135356 es_ES
dc.description.references Canet-Ferrer, J., Munoz-Matutano, G., Fuster, D., Alen, B., Gonzalez, Y., Gonzalez, L., & Martinez-Pastor, J. P. (2011). Localization effects on recombination dynamics in InAs/InP self-assembled quantum wires emitting at 1.5 μm. Journal of Applied Physics, 110(10), 103502. doi:10.1063/1.3660260 es_ES
dc.description.references Alén, B., Martı́nez-Pastor, J., Garcı́a-Cristobal, A., González, L., & Garcı́a, J. M. (2001). Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires. Applied Physics Letters, 78(25), 4025-4027. doi:10.1063/1.1379991 es_ES
dc.description.references Cao, M., Daste, P., Miyamoto, Y., Miyake, Y., Nogiwa, S., Arai, S., … Suematsu, Y. (1988). GaInAsP/InP single-quantum-well (SQW) laser with wire-like active region towards quantum wire laser. Electronics Letters, 24(13), 824. doi:10.1049/el:19880561 es_ES
dc.description.references Atlasov, K. A., Calic, M., Karlsson, K. F., Gallo, P., Rudra, A., Dwir, B., & Kapon, E. (2009). Photonic-crystal microcavity laser with site-controlled quantum-wire active medium. Optics Express, 17(20), 18178. doi:10.1364/oe.17.018178 es_ES
dc.description.references Martinez, L. J., Alén, B., Prieto, I., Fuster, D., González, L., González, Y., … Postigo, P. A. (2009). Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires. Optics Express, 17(17), 14993. doi:10.1364/oe.17.014993 es_ES
dc.description.references Mao, M.-H., & Chien, H.-C. (2012). Transient behaviors of current-injection quantum-dot microdisk lasers. Optics Express, 20(3), 3302. doi:10.1364/oe.20.003302 es_ES
dc.description.references Gregersen, N., Suhr, T., Lorke, M., & Mørk, J. (2012). Quantum-dot nano-cavity lasers with Purcell-enhanced stimulated emission. Applied Physics Letters, 100(13), 131107. doi:10.1063/1.3697702 es_ES
dc.description.references Kim, S.-H., Kim, G.-H., Kim, S.-K., Park, H.-G., Lee, Y.-H., & Kim, S.-B. (2004). Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab. Journal of Applied Physics, 95(2), 411-416. doi:10.1063/1.1633645 es_ES
dc.description.references Martínez, L. J., Prieto, I., Alén, B., & Postigo, P. A. (2009). Fabrication of high quality factor photonic crystal microcavities in InAsP∕InP membranes combining reactive ion beam etching and reactive ion etching. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 27(4), 1801. doi:10.1116/1.3151832 es_ES
dc.description.references Canet-Ferrer, J., Martínez, L. J., Prieto, I., Alén, B., Muñoz-Matutano, G., Fuster, D., … Martínez-Pastor, J. P. (2012). Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires. Optics Express, 20(7), 7901. doi:10.1364/oe.20.007901 es_ES
dc.description.references Alén, B., Fuster, D., Muñoz-Matutano, G., Martínez-Pastor, J., González, Y., Canet-Ferrer, J., & González, L. (2008). Exciton Gas Compression and Metallic Condensation in a Single Semiconductor Quantum Wire. Physical Review Letters, 101(6). doi:10.1103/physrevlett.101.067405 es_ES
dc.description.references Baba, T., & Sano, D. (2003). Low-threshold lasing and purcell effect in microdisk lasers at room temperature. IEEE Journal of Selected Topics in Quantum Electronics, 9(5), 1340-1346. doi:10.1109/jstqe.2003.819464 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem