- -

Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients

Mostrar el registro completo del ítem

Boiti, C.; Jornet Casanova, D.; Juan Huguet, J. (2014). Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients. Abstract and Applied Analysis. 2014:1-17. https://doi.org/10.1155/2014/438716

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/40478

Ficheros en el ítem

Metadatos del ítem

Título: Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients
Autor: Boiti, C. Jornet Casanova, David Juan Huguet, Jordi
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
We introduce the wave front set WF*P(u) with respect to the iterates of a hypoelliptic linear partial differential operator with constant coefficients of a classical distribution u is an element of D' (Omega) in an open ...[+]
Palabras clave: Partial-differential equations , Non-quasianalytic classes , Boundary values
Derechos de uso: Reconocimiento (by)
Fuente:
Abstract and Applied Analysis. (issn: 1085-3375 )
DOI: 10.1155/2014/438716
Editorial:
Hindawi Publishing Corporation
Versión del editor: http://dx.doi.org/10.1155/2014/438716
Código del Proyecto:
info:eu-repo/grantAgreement/UNIFE//FAR2009/
info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/
info:eu-repo/grantAgreement/UPV//PAID-06-12/
Agradecimientos:
The research of the first and the second authors was partially supported by Grants PRIN2008 (MIUR) and FAR2009 (University of Ferrara). The research of the second and third authors was partially supported by MEC and FEDER, ...[+]
Tipo: Artículo

References

Komatsu, H. (1960). A characterization of real analytic functions. Proceedings of the Japan Academy, 36(3), 90-93. doi:10.3792/pja/1195524081

Newberger, E., & Ziele{źny, Z. (1973). The growth of hypoelliptic polynomials and Gevrey classes. Proceedings of the American Mathematical Society, 39(3), 547-547. doi:10.1090/s0002-9939-1973-0318660-6

Métivier, G. (1978). Propriete des iteres et ellipticite. Communications in Partial Differential Equations, 3(9), 827-876. doi:10.1080/03605307808820078 [+]
Komatsu, H. (1960). A characterization of real analytic functions. Proceedings of the Japan Academy, 36(3), 90-93. doi:10.3792/pja/1195524081

Newberger, E., & Ziele{źny, Z. (1973). The growth of hypoelliptic polynomials and Gevrey classes. Proceedings of the American Mathematical Society, 39(3), 547-547. doi:10.1090/s0002-9939-1973-0318660-6

Métivier, G. (1978). Propriete des iteres et ellipticite. Communications in Partial Differential Equations, 3(9), 827-876. doi:10.1080/03605307808820078

Langenbruch, M. (1979). P-Funktionale und Randwerte zu Hypoelliptischen Differentialoperatoren. Mathematische Annalen, 239(1), 55-74. doi:10.1007/bf01420493

Langenbruch, M. (1985). On the functional dimension of solution spaces of hypoelliptic partial differential operators. Mathematische Annalen, 272(2), 217-229. doi:10.1007/bf01450566

Bouzar, C., & Cha�li, R. (2001). Une g�n�ralisation du probl�me des it�r�s. Archiv der Mathematik, 76(1), 57-66. doi:10.1007/s000130050542

Bouzar, C., & Chaili, R. (2003). Proceedings of the American Mathematical Society, 131(05), 1565-1573. doi:10.1090/s0002-9939-02-06799-0

Calvo, D., & Rodino, L. (2011). Iterates of operators and Gelfand–Shilov classes. Integral Transforms and Special Functions, 22(4-5), 269-276. doi:10.1080/10652469.2010.541037

Juan-Huguet, J. (2010). Iterates and Hypoellipticity of Partial Differential Operators on Non-Quasianalytic Classes. Integral Equations and Operator Theory, 68(2), 263-286. doi:10.1007/s00020-010-1816-5

Braun, R. W., Meise, R., & Taylor, B. A. (1990). Ultradifferentiable functions and Fourier analysis. Results in Mathematics, 17(3-4), 206-237. doi:10.1007/bf03322459

Juan-Huguet, J. (2012). A Paley–Wiener type theorem for generalized non-quasianalytic classes. Studia Mathematica, 208(1), 31-46. doi:10.4064/sm208-1-3

Hörmander, L. (1971). Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients. Communications on Pure and Applied Mathematics, 24(5), 671-704. doi:10.1002/cpa.3160240505

Albanese, A. A., Jornet, D., & Oliaro, A. (2010). Quasianalytic Wave Front Sets for Solutions of Linear Partial Differential Operators. Integral Equations and Operator Theory, 66(2), 153-181. doi:10.1007/s00020-010-1742-6

Albanese, A. A., Jornet, D., & Oliaro, A. (2011). Wave front sets for ultradistribution solutions of linear partial differential operators with coefficients in non-quasianalytic classes. Mathematische Nachrichten, 285(4), 411-425. doi:10.1002/mana.201010039

Fernández, C., Galbis, A., & Jornet, D. (2008). Pseudodifferential operators of Beurling type and the wave front set. Journal of Mathematical Analysis and Applications, 340(2), 1153-1170. doi:10.1016/j.jmaa.2007.09.035

Hörmander, L. (1958). On interior regularity of the solutions of partial differential equations. Communications on Pure and Applied Mathematics, 11(2), 197-218. doi:10.1002/cpa.3160110205

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem