- -

Mean ergodic semigroups of operators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mean ergodic semigroups of operators

Mostrar el registro completo del ítem

Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2012). Mean ergodic semigroups of operators. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. 106(2):299-319. https://doi.org/10.1007/s13398-011-0054-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/40626

Ficheros en el ítem

Metadatos del ítem

Título: Mean ergodic semigroups of operators
Autor: Albanese, Angela Anna Bonet Solves, José Antonio Ricker, Werner Joseph
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
We present criteria for determining mean ergodicity of C 0-semigroups of linear operators in a sequentially complete, locally convex Hausdorff space X. A characterization of reflexivity of certain spaces X with a basis via ...[+]
Palabras clave: Grothendieck , Banach spaces , C 0-semigroup , Locally convex space , Mean ergodic
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. (issn: 1578-7303 )
DOI: 10.1007/s13398-011-0054-2
Editorial:
Springer Verlag (Germany)
Versión del editor: http://link.springer.com/article/10.1007/s13398-011-0054-2
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2010-15200/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS MATEMATICO/
info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/
Agradecimientos:
Research partially supported by MICINN and FEDER Project MTM2010-15200 and GV Project Prometeo/2008/101.
Tipo: Artículo

References

Albanese A.A., Bonet J., Ricker W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)

Albanese A.A., Bonet J., Ricker W.J.: Grothendieck spaces with the Dunford–Pettis property. Positivity 14, 145–164 (2010)

Albanese, A.A., Bonet, J., Ricker, W.J.: On mean ergodic operators. In: Curbera, G.P. et al. (eds.) Vector Measures, Integration and Related Topics. Operator Theory: Advances and Applications, vol. 201, pp. 1–20. Birkhäuser, Basel (2010) [+]
Albanese A.A., Bonet J., Ricker W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)

Albanese A.A., Bonet J., Ricker W.J.: Grothendieck spaces with the Dunford–Pettis property. Positivity 14, 145–164 (2010)

Albanese, A.A., Bonet, J., Ricker, W.J.: On mean ergodic operators. In: Curbera, G.P. et al. (eds.) Vector Measures, Integration and Related Topics. Operator Theory: Advances and Applications, vol. 201, pp. 1–20. Birkhäuser, Basel (2010)

Albanese A.A., Bonet J., Ricker W.J.: C 0-semigroups and mean ergodic operators in a class of Fréchet spaces. J. Math. Anal. Appl. 365, 142–157 (2010)

Bonet J., Ricker W.J.: Schauder decompositions and the Grothendieck and the Dunford–Pettis properties in Köthe echelon spaces of infinite order. Positivity 11, 77–93 (2007)

Bonet J., Ricker W.J.: Mean ergodicity of multiplication operators in weighted spaces of holomorphic functions. Arch. Math. 92, 428–437 (2009)

Bonet J., de Pagter B., Ricker W.J.: Mean ergodic operators and reflexive Fréchet lattices. Proc. R. Soc. Edinb. Sect. A 141, 897–920 (2011)

Dunford N., Schwartz J.T.: Linear Operators I: General Theory, 2nd edn. Wiley, New York (1964)

Eberlein W.F.: Abstract ergodic theorems and weak almost periodic functions. Trans. Am. Math. Soc. 67, 217–240 (1949)

Edwards R.E.: Functional Analysis. Reinhart and Winston, New York (1965)

Engel K.-J., Nagel R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (1999)

Floret, K.: Weakly compact sets. In: LNM, vol. 801. Springer, Berlin (1980)

Fonf V.P., Lin M., Wojtaszczyk P.: Ergodic characterizations of reflexivity in Banach spaces. J. Funct. Anal. 187, 146–162 (2001)

Hille, E., Phillips, R.S.: Functional Analysis and Semigroups, 4th edn. American Math. Soc., Providence (1981, revised)

Jarchow H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981)

Kelley J.L.: General Topology, Rev. Edn, D. van Nostrand Co., Princeton–New York (1961)

Komatsu H.: Semi-groups of operators in locally convex spaces. J. Math. Soc. Japan 16, 230–262 (1964)

Komura T.: Semigroups of operators in locally convex spaces. J. Funct. Anal. 2, 258–296 (1968)

Köthe, G.: Topological Vector Spaces I, 2nd edn. Springer, Berlin (1983, revised)

Köthe G.: Topological Vector Spaces II. Springer, Berlin (1979)

Krengel U.: Ergodic Theorems. Walter de Gruyter, Berlin (1985)

Lotz, H.P. (1984) Tauberian theorems for operators on L ∞ and similar spaces. In: Bierstedt, K.D., Fuchssteiner, B. (eds.) Functional Analyis: Surveys and Recent Results III. North Holland, Amsterdam, pp. 117–133

Lotz H.P.: Uniform convergence of operators on L ∞ and similar spaces. Math. Z. 190, 207–220 (1985)

Meise R., Vogt D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)

Miyadera I.: Semigroups of operators in Fréchet spaces and applications to partial differential operators. Tôhoku Math. J. 11, 162–183 (1959)

Mugnolo D.: A semigroup analogue of the Fonf–Lin–Wojtaszczyk characterization of reflexive Banach spaces with a basis. Studia Math. 164, 243–251 (2004)

Piszczek K.: Quasi-reflexive Fréchet spaces and mean ergodicity. J. Math. Anal. Appl. 361, 224–233 (2010)

Piszczek K.: Barrelled spaces and mean ergodicity. RACSAM 104, 5–11 (2010)

Rudin W.: Functional Analysis. McGraw-Hill, New York (1973)

Sato R.: On a mean ergodic theorem. Proc. Am. Math. Soc. 83, 563–564 (1981)

Schaefer H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)

Shaw S.-Y.: Ergodic projections of continuous and discrete semigroups. Proc. Am. Math. Soc. 78, 69–76 (1980)

Yosida K.: Functional Analysis. Springer, Berlin (1980)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem