- -

Asymptotic structures of cardinals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Asymptotic structures of cardinals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Petrenko, Oleksandr es_ES
dc.contributor.author Protasov, Igor V. es_ES
dc.contributor.author Slobodianiuk, Sergii es_ES
dc.date.accessioned 2014-10-27T16:39:21Z
dc.date.available 2014-10-27T16:39:21Z
dc.date.issued 2014-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/43613
dc.description.abstract [EN] A ballean is a set X endowed with some family F of its subsets, called the balls, in such a way that (X,F)  can be considered as an asymptotic counterpart of a uniform topological space. Given a cardinal k, we define F using a natural order structure on k. We characterize balleans up to coarse equivalence, give the criterions of metrizability and cellularity, calculate the basic cardinal invariant of these balleans. We conclude the paper with discussion of some special ultrafilters on cardinal balleans. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Cardinal balleans es_ES
dc.subject Coarse equivalence es_ES
dc.subject Metrizability es_ES
dc.subject Cellularity es_ES
dc.subject Cardinal invariants es_ES
dc.subject Ultrafilter es_ES
dc.title Asymptotic structures of cardinals es_ES
dc.type Artículo es_ES
dc.date.updated 2014-10-27T16:24:56Z
dc.identifier.doi 10.4995/agt.2014.3109
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Petrenko, O.; Protasov, IV.; Slobodianiuk, S. (2014). Asymptotic structures of cardinals. Applied General Topology. 15(2):137-146. https://doi.org/10.4995/agt.2014.3109 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2014.3109 es_ES
dc.description.upvformatpinicio 137 es_ES
dc.description.upvformatpfin 146 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.description.references Filali, M., & Protasov, I. V. (2008). Spread of balleans. Applied General Topology, 9(2), 169-175. doi:10.4995/agt.2008.1796 es_ES
dc.description.references K. P. Hart and J. Van Mill, Open problems in $betaomega$, in Open Problems in Topology, J.vanMill, G.M.Reed (Editors), Elsevier Science Publishers, North Holland, 1990, 98-125. es_ES
dc.description.references Hindman, N., & Strauss, D. (1998). Algebra in the Stone-Čech Compactification. doi:10.1515/9783110809220 es_ES
dc.description.references J. Ketonen, On the existence of $P$-points in the Stone-Cech compactification of integers, Fundam. Math. 62 (1976), 91-94. es_ES
dc.description.references K. Kunen, Set Theory: An Introduction to Independence Proofs, North-Holland, 1980. es_ES
dc.description.references Mathias, A. R. D. (1978). O# and the p-point problem. Higher Set Theory, 375-384. doi:10.1007/bfb0103109 es_ES
dc.description.references Petrenko, O., & Protasov, I. V. (2012). Thin Ultrafilters. Notre Dame Journal of Formal Logic, 53(1), 79-88. doi:10.1215/00294527-1626536 es_ES
dc.description.references Petrenko, O. V., & Protasov, I. V. (2012). Balleans and G-spaces. Ukrainian Mathematical Journal, 64(3), 387-393. doi:10.1007/s11253-012-0653-x es_ES
dc.description.references Protasov, I. V. (2004). Resolvability of ball structures. Applied General Topology, 5(2), 191. doi:10.4995/agt.2004.1969 es_ES
dc.description.references Protasov, I. V. (2007). Cellularity and density of balleans. Applied General Topology, 8(2), 283-291. doi:10.4995/agt.2007.1898 es_ES
dc.description.references Protasov, I. V. (2013). The combinatorial derivation. Applied General Topology, 14(2). doi:10.4995/agt.2013.1587 es_ES
dc.description.references I. V.Protasov,Extraresolvability of balleans, Comment. Math. Univ. Carolinae 48 (2007), 161-175. es_ES
dc.description.references I. V. Protasov and M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL Publishers, Lviv, 2007. es_ES
dc.description.references J. Roe, Lectures on Coarse Geometry, Amer. Math. Soc., Providence, R.I, 2003. es_ES
dc.description.references Rudin, W. (1956). Homogeneity problems in the theory of ?ech compactifications. Duke Mathematical Journal, 23(3), 409-419. doi:10.1215/s0012-7094-56-02337-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem