Mostrar el registro sencillo del ítem
dc.contributor.author | Petrenko, Oleksandr | es_ES |
dc.contributor.author | Protasov, Igor V. | es_ES |
dc.contributor.author | Slobodianiuk, Sergii | es_ES |
dc.date.accessioned | 2014-10-27T16:39:21Z | |
dc.date.available | 2014-10-27T16:39:21Z | |
dc.date.issued | 2014-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/43613 | |
dc.description.abstract | [EN] A ballean is a set X endowed with some family F of its subsets, called the balls, in such a way that (X,F) can be considered as an asymptotic counterpart of a uniform topological space. Given a cardinal k, we define F using a natural order structure on k. We characterize balleans up to coarse equivalence, give the criterions of metrizability and cellularity, calculate the basic cardinal invariant of these balleans. We conclude the paper with discussion of some special ultrafilters on cardinal balleans. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Cardinal balleans | es_ES |
dc.subject | Coarse equivalence | es_ES |
dc.subject | Metrizability | es_ES |
dc.subject | Cellularity | es_ES |
dc.subject | Cardinal invariants | es_ES |
dc.subject | Ultrafilter | es_ES |
dc.title | Asymptotic structures of cardinals | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2014-10-27T16:24:56Z | |
dc.identifier.doi | 10.4995/agt.2014.3109 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Petrenko, O.; Protasov, IV.; Slobodianiuk, S. (2014). Asymptotic structures of cardinals. Applied General Topology. 15(2):137-146. https://doi.org/10.4995/agt.2014.3109 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2014.3109 | es_ES |
dc.description.upvformatpinicio | 137 | es_ES |
dc.description.upvformatpfin | 146 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Filali, M., & Protasov, I. V. (2008). Spread of balleans. Applied General Topology, 9(2), 169-175. doi:10.4995/agt.2008.1796 | es_ES |
dc.description.references | K. P. Hart and J. Van Mill, Open problems in $betaomega$, in Open Problems in Topology, J.vanMill, G.M.Reed (Editors), Elsevier Science Publishers, North Holland, 1990, 98-125. | es_ES |
dc.description.references | Hindman, N., & Strauss, D. (1998). Algebra in the Stone-Čech Compactification. doi:10.1515/9783110809220 | es_ES |
dc.description.references | J. Ketonen, On the existence of $P$-points in the Stone-Cech compactification of integers, Fundam. Math. 62 (1976), 91-94. | es_ES |
dc.description.references | K. Kunen, Set Theory: An Introduction to Independence Proofs, North-Holland, 1980. | es_ES |
dc.description.references | Mathias, A. R. D. (1978). O# and the p-point problem. Higher Set Theory, 375-384. doi:10.1007/bfb0103109 | es_ES |
dc.description.references | Petrenko, O., & Protasov, I. V. (2012). Thin Ultrafilters. Notre Dame Journal of Formal Logic, 53(1), 79-88. doi:10.1215/00294527-1626536 | es_ES |
dc.description.references | Petrenko, O. V., & Protasov, I. V. (2012). Balleans and G-spaces. Ukrainian Mathematical Journal, 64(3), 387-393. doi:10.1007/s11253-012-0653-x | es_ES |
dc.description.references | Protasov, I. V. (2004). Resolvability of ball structures. Applied General Topology, 5(2), 191. doi:10.4995/agt.2004.1969 | es_ES |
dc.description.references | Protasov, I. V. (2007). Cellularity and density of balleans. Applied General Topology, 8(2), 283-291. doi:10.4995/agt.2007.1898 | es_ES |
dc.description.references | Protasov, I. V. (2013). The combinatorial derivation. Applied General Topology, 14(2). doi:10.4995/agt.2013.1587 | es_ES |
dc.description.references | I. V.Protasov,Extraresolvability of balleans, Comment. Math. Univ. Carolinae 48 (2007), 161-175. | es_ES |
dc.description.references | I. V. Protasov and M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL Publishers, Lviv, 2007. | es_ES |
dc.description.references | J. Roe, Lectures on Coarse Geometry, Amer. Math. Soc., Providence, R.I, 2003. | es_ES |
dc.description.references | Rudin, W. (1956). Homogeneity problems in the theory of ?ech compactifications. Duke Mathematical Journal, 23(3), 409-419. doi:10.1215/s0012-7094-56-02337-7 | es_ES |