Mostrar el registro sencillo del ítem
dc.contributor.author | Alaste, Tomi Matias | es_ES |
dc.date.accessioned | 2014-10-28T07:32:23Z | |
dc.date.available | 2014-10-28T07:32:23Z | |
dc.date.issued | 2014-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/43627 | |
dc.description.abstract | [EN] Let F be a lattice of real-valued functions on a non-empty set X such that F contains the constant functions. Using certain filters on X determined by F, we construct a compact Hausdorff topological space δX with the property that every bounded member of F extends to δX and these extensions form a dense subspace of C(δX). If A is any C*-subalgebra of ℓ∞(X) containing the constant functions, then our construction gives a representation of the spectrum of A as a space of filters on X. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Function lattice | es_ES |
dc.subject | F-filter | es_ES |
dc.subject | F-ultrafilter | es_ES |
dc.subject | Spectrum | es_ES |
dc.title | Function lattices and compactifications | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2014-10-27T16:25:04Z | |
dc.identifier.doi | 10.4995/agt.2014.2050 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Alaste, TM. (2014). Function lattices and compactifications. Applied General Topology. 15(2):183-202. https://doi.org/10.4995/agt.2014.2050 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2014.2050 | es_ES |
dc.description.upvformatpinicio | 183 | es_ES |
dc.description.upvformatpfin | 202 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Alaste, T. (2012). U-filters and uniform compactification. Studia Mathematica, 211(3), 215-229. doi:10.4064/sm211-3-3 | es_ES |
dc.description.references | Budak, T., & Pym, J. (2006). Local Topological Structure in the LUC-Compactification of a Locally Compact Group and its Relationship with Veech’s Theorem. Semigroup Forum, 73(2), 159-174. doi:10.1007/s00233-006-0623-4 | es_ES |
dc.description.references | Berglund, J. F., & Hindman, N. (1984). Filters and the weak almost periodic compactification of a discrete semigroup. Transactions of the American Mathematical Society, 284(1), 1-1. doi:10.1090/s0002-9947-1984-0742410-4 | es_ES |
dc.description.references | Comfort, W. W., & Negrepontis, S. (1974). The Theory of Ultrafilters. doi:10.1007/978-3-642-65780-1 | es_ES |
dc.description.references | G.B. Folland, A course in abstract harmonic analysis, (CRC Press, Boca Raton, FL, 1995). | es_ES |
dc.description.references | L. Gillman and M. Jerison, Rings of continuous functions, (Springer-Verlag, New York, 1976). | es_ES |
dc.description.references | Hindman, N., & Strauss, D. (1998). Algebra in the Stone-Čech Compactification. doi:10.1515/9783110809220 | es_ES |
dc.description.references | Isbell, J. (1964). Uniform Spaces. Mathematical Surveys and Monographs. doi:10.1090/surv/012 | es_ES |
dc.description.references | G. J. O. Jameson, Topology and normed spaces, (Chapman and Hall, London, 1974). | es_ES |
dc.description.references | Koçak, M., & Strauss, D. (1997). Near Ultrafilters and Compactifications. Semigroup Forum, 55(1), 94-109. doi:10.1007/pl00005915 | es_ES |
dc.description.references | S. A. Naimpally and B. D. Warrack, Proximity spaces (Cambridge University Press, London, 1970). | es_ES |
dc.description.references | Tootkaboni, M. A., & Riazi, A. (2004). Ultrafilters on Semitopological Semigroups. Semigroup Forum, 70(3), 317-328. doi:10.1007/s00233-003-0015-y | es_ES |
dc.description.references | Walker, R. C. (Ed.). (1974). The Stone-Čech Compactification. doi:10.1007/978-3-642-61935-9 | es_ES |
dc.description.references | S. Willard, General topology, (Addison-Wesley, Reading, 1970). | es_ES |