- -

Unlocked evanescent waves in periodic structures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unlocked evanescent waves in periodic structures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Botey, Muriel es_ES
dc.contributor.author Cheng, Yu-Chieh es_ES
dc.contributor.author Romero García, Vicente es_ES
dc.contributor.author Picó Vila, Rubén es_ES
dc.contributor.author Herrero, Ramon es_ES
dc.contributor.author Sánchez Morcillo, Víctor José es_ES
dc.contributor.author Staliünas, Kestutis es_ES
dc.date.accessioned 2014-11-03T16:15:18Z
dc.date.available 2014-11-03T16:15:18Z
dc.date.issued 2013-06-01
dc.identifier.issn 0146-9592
dc.identifier.uri http://hdl.handle.net/10251/43820
dc.description This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.38.001890. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law. es_ES
dc.description.abstract We predict the existence of evanescent modes with unlocked phases in two-dimensional (2D) dielectric periodic structures. Contrary to what is known for one-dimensional structures, where evanescent fields lock to the host modulation, we show that in 2D systems a new class of evanescent modes exists with an unlocked real part of the wave vector. Hence, beams constructed from such unlocked evanescent waves can exhibit spatial effects. A significant focalization of a beam propagating within the band gap of a flat photonic crystal slab is also shown. The predicted phenomenon is expected to be generic for spatially modulated materials. es_ES
dc.description.sponsorship We acknowledge financial support by Spanish Ministerio de Ciencia e Innovacion and European Union FEDER through project FIS2011-29731-C02-01 and -02. V. R. G. is grateful for the contract UPV CEI-01-11. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject NEGATIVE REFRACTION es_ES
dc.subject LENS es_ES
dc.subject LIGHT es_ES
dc.subject PROPAGATION es_ES
dc.subject PHOTONIC CRYSTALS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Unlocked evanescent waves in periodic structures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OL.38.001890
dc.relation.projectID info:eu-repo/grantAgreement/UPV//CEI-01-11/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-02/ES/CONTROL DE LA DIFRACCION DEL SONIDO EN MEDIOS MODULADOS: FOCALIZACION, FILTRADO ESPACIAL Y OTROS EFECTOS DE CONFORMACION DE HACES TRAS LA TRANSMISION Y REFLEXION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Botey, M.; Cheng, Y.; Romero García, V.; Picó Vila, R.; Herrero, R.; Sánchez Morcillo, VJ.; Staliünas, K. (2013). Unlocked evanescent waves in periodic structures. Optics Letters. 38(11):1890-1892. doi:10.1364/OL.38.001890 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OL.38.001890 es_ES
dc.description.upvformatpinicio 1890 es_ES
dc.description.upvformatpfin 1892 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 253315
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059 es_ES
dc.description.references John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486 es_ES
dc.description.references Notomi, M. (2000). Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Physical Review B, 62(16), 10696-10705. doi:10.1103/physrevb.62.10696 es_ES
dc.description.references Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., & Kawakami, S. (1999). Self-collimating phenomena in photonic crystals. Applied Physics Letters, 74(9), 1212-1214. doi:10.1063/1.123502 es_ES
dc.description.references Chigrin, D., Enoch, S., Sotomayor Torres, C., & Tayeb, G. (2003). Self-guiding in two-dimensional photonic crystals. Optics Express, 11(10), 1203. doi:10.1364/oe.11.001203 es_ES
dc.description.references Iliew, R., Etrich, C., Peschel, U., Lederer, F., Augustin, M., Fuchs, H.-J., … Tünnermann, A. (2004). Diffractionless propagation of light in a low-index photonic-crystal film. Applied Physics Letters, 85(24), 5854-5856. doi:10.1063/1.1830675 es_ES
dc.description.references Prather, D. W., Shi, S., Pustai, D. M., Chen, C., Venkataraman, S., Sharkawy, A., … Murakowski, J. (2004). Dispersion-based optical routing in photonic crystals. Optics Letters, 29(1), 50. doi:10.1364/ol.29.000050 es_ES
dc.description.references Staliunas, K., & Herrero, R. (2006). Nondiffractive propagation of light in photonic crystals. Physical Review E, 73(1). doi:10.1103/physreve.73.016601 es_ES
dc.description.references Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966 es_ES
dc.description.references Parimi, P. V., Lu, W. T., Vodo, P., & Sridhar, S. (2003). Imaging by flat lens using negative refraction. Nature, 426(6965), 404-404. doi:10.1038/426404a es_ES
dc.description.references Kockaert, P., Tassin, P., Van der Sande, G., Veretennicoff, I., & Tlidi, M. (2006). Negative diffraction pattern dynamics in nonlinear cavities with left-handed materials. Physical Review A, 74(3). doi:10.1103/physreva.74.033822 es_ES
dc.description.references Tassin, P., Gelens, L., Danckaert, J., Veretennicoff, I., Van der Sande, G., Kockaert, P., & Tlidi, M. (2007). Dissipative structures in left-handed material cavity optics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 17(3), 037116. doi:10.1063/1.2768158 es_ES
dc.description.references Luo, C., Johnson, S. G., Joannopoulos, J. D., & Pendry, J. B. (2002). All-angle negative refraction without negative effective index. Physical Review B, 65(20). doi:10.1103/physrevb.65.201104 es_ES
dc.description.references Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., & Soukoulis, C. M. (2003). Negative refraction by photonic crystals. Nature, 423(6940), 604-605. doi:10.1038/423604b es_ES
dc.description.references Luo, C., Johnson, S. G., Joannopoulos, J. D., & Pendry, J. B. (2003). Subwavelength imaging in photonic crystals. Physical Review B, 68(4). doi:10.1103/physrevb.68.045115 es_ES
dc.description.references Hsue, Y.-C., & Yang, T.-J. (2004). Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite photonic crystal. Physical Review E, 70(1). doi:10.1103/physreve.70.016706 es_ES
dc.description.references Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., Castiñeira-Ibáñez, S., & Garcia-Raffi, L. M. (2010). Evidences of evanescent Bloch waves in phononic crystals. Applied Physics Letters, 96(12), 124102. doi:10.1063/1.3367739 es_ES
dc.description.references Botey, M., Herrero, R., & Staliunas, K. (2010). Light in materials with periodic gain-loss modulation on a wavelength scale. Physical Review A, 82(1). doi:10.1103/physreva.82.013828 es_ES
dc.description.references Feng, C. S., Mei, L. M., Cai, L. Z., Yang, X. L., Wei, S. S., & Li, P. (2006). A plane-wave-based approach for complex photonic band structure and its applications to semi-infinite and finite system. Journal of Physics D: Applied Physics, 39(20), 4316-4323. doi:10.1088/0022-3727/39/20/005 es_ES
dc.description.references Romero-García, V., Vasseur, J. O., Hladky-Hennion, A. C., Garcia-Raffi, L. M., & Sánchez-Pérez, J. V. (2011). Level repulsion and evanescent waves in sonic crystals. Physical Review B, 84(21). doi:10.1103/physrevb.84.212302 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem