- -

Unlocked evanescent waves in periodic structures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unlocked evanescent waves in periodic structures

Mostrar el registro completo del ítem

Botey, M.; Cheng, Y.; Romero García, V.; Picó Vila, R.; Herrero, R.; Sánchez Morcillo, VJ.; Staliünas, K. (2013). Unlocked evanescent waves in periodic structures. Optics Letters. 38(11):1890-1892. doi:10.1364/OL.38.001890

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43820

Ficheros en el ítem

Metadatos del ítem

Título: Unlocked evanescent waves in periodic structures
Autor: Botey, Muriel Cheng, Yu-Chieh Romero García, Vicente Picó Vila, Rubén Herrero, Ramon Sánchez Morcillo, Víctor José Staliünas, Kestutis
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Fecha difusión:
Resumen:
We predict the existence of evanescent modes with unlocked phases in two-dimensional (2D) dielectric periodic structures. Contrary to what is known for one-dimensional structures, where evanescent fields lock to the host ...[+]
Palabras clave: NEGATIVE REFRACTION , LENS , LIGHT , PROPAGATION , PHOTONIC CRYSTALS
Derechos de uso: Reserva de todos los derechos
Fuente:
Optics Letters. (issn: 0146-9592 )
DOI: 10.1364/OL.38.001890
Editorial:
Optical Society of America
Versión del editor: http://dx.doi.org/10.1364/OL.38.001890
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//CEI-01-11/
info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-02/ES/CONTROL DE LA DIFRACCION DEL SONIDO EN MEDIOS MODULADOS: FOCALIZACION, FILTRADO ESPACIAL Y OTROS EFECTOS DE CONFORMACION DE HACES TRAS LA TRANSMISION Y REFLEXION/
Descripción: This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.38.001890. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
Agradecimientos:
We acknowledge financial support by Spanish Ministerio de Ciencia e Innovacion and European Union FEDER through project FIS2011-29731-C02-01 and -02. V. R. G. is grateful for the contract UPV CEI-01-11.
Tipo: Artículo

References

Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059

John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486

Notomi, M. (2000). Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Physical Review B, 62(16), 10696-10705. doi:10.1103/physrevb.62.10696 [+]
Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. doi:10.1103/physrevlett.58.2059

John, S. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 58(23), 2486-2489. doi:10.1103/physrevlett.58.2486

Notomi, M. (2000). Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Physical Review B, 62(16), 10696-10705. doi:10.1103/physrevb.62.10696

Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., & Kawakami, S. (1999). Self-collimating phenomena in photonic crystals. Applied Physics Letters, 74(9), 1212-1214. doi:10.1063/1.123502

Chigrin, D., Enoch, S., Sotomayor Torres, C., & Tayeb, G. (2003). Self-guiding in two-dimensional photonic crystals. Optics Express, 11(10), 1203. doi:10.1364/oe.11.001203

Iliew, R., Etrich, C., Peschel, U., Lederer, F., Augustin, M., Fuchs, H.-J., … Tünnermann, A. (2004). Diffractionless propagation of light in a low-index photonic-crystal film. Applied Physics Letters, 85(24), 5854-5856. doi:10.1063/1.1830675

Prather, D. W., Shi, S., Pustai, D. M., Chen, C., Venkataraman, S., Sharkawy, A., … Murakowski, J. (2004). Dispersion-based optical routing in photonic crystals. Optics Letters, 29(1), 50. doi:10.1364/ol.29.000050

Staliunas, K., & Herrero, R. (2006). Nondiffractive propagation of light in photonic crystals. Physical Review E, 73(1). doi:10.1103/physreve.73.016601

Pendry, J. B. (2000). Negative Refraction Makes a Perfect Lens. Physical Review Letters, 85(18), 3966-3969. doi:10.1103/physrevlett.85.3966

Parimi, P. V., Lu, W. T., Vodo, P., & Sridhar, S. (2003). Imaging by flat lens using negative refraction. Nature, 426(6965), 404-404. doi:10.1038/426404a

Kockaert, P., Tassin, P., Van der Sande, G., Veretennicoff, I., & Tlidi, M. (2006). Negative diffraction pattern dynamics in nonlinear cavities with left-handed materials. Physical Review A, 74(3). doi:10.1103/physreva.74.033822

Tassin, P., Gelens, L., Danckaert, J., Veretennicoff, I., Van der Sande, G., Kockaert, P., & Tlidi, M. (2007). Dissipative structures in left-handed material cavity optics. Chaos: An Interdisciplinary Journal of Nonlinear Science, 17(3), 037116. doi:10.1063/1.2768158

Luo, C., Johnson, S. G., Joannopoulos, J. D., & Pendry, J. B. (2002). All-angle negative refraction without negative effective index. Physical Review B, 65(20). doi:10.1103/physrevb.65.201104

Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulou, S., & Soukoulis, C. M. (2003). Negative refraction by photonic crystals. Nature, 423(6940), 604-605. doi:10.1038/423604b

Luo, C., Johnson, S. G., Joannopoulos, J. D., & Pendry, J. B. (2003). Subwavelength imaging in photonic crystals. Physical Review B, 68(4). doi:10.1103/physrevb.68.045115

Hsue, Y.-C., & Yang, T.-J. (2004). Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite photonic crystal. Physical Review E, 70(1). doi:10.1103/physreve.70.016706

Laude, V., Achaoui, Y., Benchabane, S., & Khelif, A. (2009). Evanescent Bloch waves and the complex band structure of phononic crystals. Physical Review B, 80(9). doi:10.1103/physrevb.80.092301

Romero-García, V., Sánchez-Pérez, J. V., Castiñeira-Ibáñez, S., & Garcia-Raffi, L. M. (2010). Evidences of evanescent Bloch waves in phononic crystals. Applied Physics Letters, 96(12), 124102. doi:10.1063/1.3367739

Botey, M., Herrero, R., & Staliunas, K. (2010). Light in materials with periodic gain-loss modulation on a wavelength scale. Physical Review A, 82(1). doi:10.1103/physreva.82.013828

Feng, C. S., Mei, L. M., Cai, L. Z., Yang, X. L., Wei, S. S., & Li, P. (2006). A plane-wave-based approach for complex photonic band structure and its applications to semi-infinite and finite system. Journal of Physics D: Applied Physics, 39(20), 4316-4323. doi:10.1088/0022-3727/39/20/005

Romero-García, V., Vasseur, J. O., Hladky-Hennion, A. C., Garcia-Raffi, L. M., & Sánchez-Pérez, J. V. (2011). Level repulsion and evanescent waves in sonic crystals. Physical Review B, 84(21). doi:10.1103/physrevb.84.212302

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem