dc.contributor.author |
Aroza, Javier
|
es_ES |
dc.contributor.author |
Peris Manguillot, Alfredo
|
es_ES |
dc.date.accessioned |
2014-11-24T09:56:36Z |
|
dc.date.available |
2014-11-24T09:56:36Z |
|
dc.date.issued |
2012 |
|
dc.identifier.issn |
1023-6198 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/44600 |
|
dc.description |
This is an Accepted Manuscript of an article published by Taylor & Francis Group in [Journal of Difference Equations and Applications] on [21-11-2012], available online at: http://www.tandfonline.com/10.1080/10236198.2011.631535 |
es_ES |
dc.description.abstract |
In this paper, we will study the chaotic behaviour, in the sense of Devaney, of infinite-dimensional linear systems on Banach spaces, especially we will study the solution C 0-semigroups of operators of these systems. We will focus on the models of kinetic theory as is the case of the birth-and-death models. Azmy and Protopopescu studied these processes for the first time. In addition, this subject has been intensively studied by Banasiak, Lachowicz and Moszyński. |
es_ES |
dc.description.sponsorship |
This paper is supported in part by MICINN and FEDER, Project MTM2010-14909, and by Generalitat Valenciana, Projects PROMETEO/2008/101 and GV/2010/091. We are indebted to the referees, whose careful remarks produced an important improvement in the paper. In particular, we thank them for pointing out to us that an argument for L to generate a C<INF>0</INF>-semigroup ought to be given in the previous version. We also thank E. Mangino for several interesting discussions. |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
Taylor & Francis |
es_ES |
dc.relation.ispartof |
Journal of Difference Equations and Applications |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Chaotic semigroup |
es_ES |
dc.subject |
Infinite-dimensional linear systems |
es_ES |
dc.subject |
Mixing semigroup |
es_ES |
dc.subject |
Sub-chaotic semigroup |
es_ES |
dc.subject |
Hypercyclic operators |
es_ES |
dc.subject |
Semigroups |
es_ES |
dc.subject |
Criteria |
es_ES |
dc.subject |
Spaces |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
Chaotic behaviour of birth-and-death models with proliferation |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1080/10236198.2011.631535 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//GV%2F2010%2F091/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO%2F2008%2F010/ES/No Informado/ |
es_ES |
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.description.bibliographicCitation |
Aroza, J.; Peris Manguillot, A. (2012). Chaotic behaviour of birth-and-death models with proliferation. Journal of Difference Equations and Applications. 18(4):647-655. https://doi.org/10.1080/10236198.2011.631535 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.1080/10236198.2011.631535 |
es_ES |
dc.description.upvformatpinicio |
647 |
es_ES |
dc.description.upvformatpfin |
655 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
18 |
es_ES |
dc.description.issue |
4 |
es_ES |
dc.relation.senia |
222079 |
|
dc.identifier.eissn |
1563-5120 |
|
dc.contributor.funder |
Ministerio de Ciencia e Innovación |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.description.references |
Banasiak, J., & Lachowicz, M. (2001). Chaos for a class of linear kinetic models. Comptes Rendus de l’Académie des Sciences - Series IIB - Mechanics, 329(6), 439-444. doi:10.1016/s1620-7742(01)01353-8 |
es_ES |
dc.description.references |
Banasiak, J., & Moszyński, M. (2005). A generalization of Desch--Schappacher--Webb criteria for chaos. Discrete and Continuous Dynamical Systems, 12(5), 959-972. doi:10.3934/dcds.2005.12.959 |
es_ES |
dc.description.references |
Banasiak, J., Lachowicz, M., & Moszynski, M. (2006). Semigroups for Generalized Birth-and-Death Equations in lp Spaces. Semigroup Forum, 73(2), 175-193. doi:10.1007/s00233-006-0621-x |
es_ES |
dc.description.references |
Banasiak, J., Lachowicz, M., & Moszyński, M. (2007). Chaotic behavior of semigroups related to the process of gene amplification–deamplification with cell proliferation. Mathematical Biosciences, 206(2), 200-215. doi:10.1016/j.mbs.2005.08.004 |
es_ES |
dc.description.references |
Bayart, F., & Grivaux, S. (2006). Transactions of the American Mathematical Society, 358(11), 5083-5118. doi:10.1090/s0002-9947-06-04019-0 |
es_ES |
dc.description.references |
Bermúdez, T., Bonilla, A., & Peris, A. (2004). On hypercyclicity and supercyclicity criteria. Bulletin of the Australian Mathematical Society, 70(1), 45-54. doi:10.1017/s0004972700035802 |
es_ES |
dc.description.references |
Bermúdez, T., Bonilla, A., Conejero, J. A., & Peris, A. (2005). Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Studia Mathematica, 170(1), 57-75. doi:10.4064/sm170-1-3 |
es_ES |
dc.description.references |
Bès, J., & Peris, A. (1999). Hereditarily Hypercyclic Operators. Journal of Functional Analysis, 167(1), 94-112. doi:10.1006/jfan.1999.3437 |
es_ES |
dc.description.references |
Conejero, J. A., & Peris, A. (2005). Linear transitivity criteria. Topology and its Applications, 153(5-6), 767-773. doi:10.1016/j.topol.2005.01.009 |
es_ES |
dc.description.references |
DESCH, W., SCHAPPACHER, W., & WEBB, G. F. (1997). Hypercyclic and chaotic semigroups of linear
operators. Ergodic Theory and Dynamical Systems, 17(4), 793-819. doi:10.1017/s0143385797084976 |
es_ES |
dc.description.references |
Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6 |
es_ES |
dc.description.references |
Mourchid, S. E. (2006). The Imaginary Point Spectrum and Hypercyclicity. Semigroup Forum, 73(2), 313-316. doi:10.1007/s00233-005-0533-x |
es_ES |
dc.description.references |
Godefroy, G., & Shapiro, J. H. (1991). Operators with dense, invariant, cyclic vector manifolds. Journal of Functional Analysis, 98(2), 229-269. doi:10.1016/0022-1236(91)90078-j |
es_ES |
dc.description.references |
Grosse-Erdmann, K.-G., & Peris Manguillot, A. (2011). Linear Chaos. Universitext. doi:10.1007/978-1-4471-2170-1 |
es_ES |
dc.description.references |
PROTOPOPESCU, V., & AZMY, Y. Y. (1992). TOPOLOGICAL CHAOS FOR A CLASS OF LINEAR MODELS. Mathematical Models and Methods in Applied Sciences, 02(01), 79-90. doi:10.1142/s0218202592000065 |
es_ES |