- -

Chaotic behaviour of birth-and-death models with proliferation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Chaotic behaviour of birth-and-death models with proliferation

Show simple item record

Files in this item

dc.contributor.author Aroza, Javier es_ES
dc.contributor.author Peris Manguillot, Alfredo es_ES
dc.date.accessioned 2014-11-24T09:56:36Z
dc.date.available 2014-11-24T09:56:36Z
dc.date.issued 2012
dc.identifier.issn 1023-6198
dc.identifier.uri http://hdl.handle.net/10251/44600
dc.description This is an Accepted Manuscript of an article published by Taylor & Francis Group in [Journal of Difference Equations and Applications] on [21-11-2012], available online at: http://www.tandfonline.com/10.1080/10236198.2011.631535 es_ES
dc.description.abstract In this paper, we will study the chaotic behaviour, in the sense of Devaney, of infinite-dimensional linear systems on Banach spaces, especially we will study the solution C 0-semigroups of operators of these systems. We will focus on the models of kinetic theory as is the case of the birth-and-death models. Azmy and Protopopescu studied these processes for the first time. In addition, this subject has been intensively studied by Banasiak, Lachowicz and Moszyński. es_ES
dc.description.sponsorship This paper is supported in part by MICINN and FEDER, Project MTM2010-14909, and by Generalitat Valenciana, Projects PROMETEO/2008/101 and GV/2010/091. We are indebted to the referees, whose careful remarks produced an important improvement in the paper. In particular, we thank them for pointing out to us that an argument for L to generate a C<INF>0</INF>-semigroup ought to be given in the previous version. We also thank E. Mangino for several interesting discussions. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Journal of Difference Equations and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chaotic semigroup es_ES
dc.subject Infinite-dimensional linear systems es_ES
dc.subject Mixing semigroup es_ES
dc.subject Sub-chaotic semigroup es_ES
dc.subject Hypercyclic operators es_ES
dc.subject Semigroups es_ES
dc.subject Criteria es_ES
dc.subject Spaces es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Chaotic behaviour of birth-and-death models with proliferation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/10236198.2011.631535
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2010%2F091/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO%2F2008%2F010/ES/No Informado/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Aroza, J.; Peris Manguillot, A. (2012). Chaotic behaviour of birth-and-death models with proliferation. Journal of Difference Equations and Applications. 18(4):647-655. https://doi.org/10.1080/10236198.2011.631535 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/10236198.2011.631535 es_ES
dc.description.upvformatpinicio 647 es_ES
dc.description.upvformatpfin 655 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 222079
dc.identifier.eissn 1563-5120
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Banasiak, J., & Lachowicz, M. (2001). Chaos for a class of linear kinetic models. Comptes Rendus de l’Académie des Sciences - Series IIB - Mechanics, 329(6), 439-444. doi:10.1016/s1620-7742(01)01353-8 es_ES
dc.description.references Banasiak, J., & Moszyński, M. (2005). A generalization of Desch--Schappacher--Webb criteria for chaos. Discrete and Continuous Dynamical Systems, 12(5), 959-972. doi:10.3934/dcds.2005.12.959 es_ES
dc.description.references Banasiak, J., Lachowicz, M., & Moszynski, M. (2006). Semigroups for Generalized Birth-and-Death Equations in lp Spaces. Semigroup Forum, 73(2), 175-193. doi:10.1007/s00233-006-0621-x es_ES
dc.description.references Banasiak, J., Lachowicz, M., & Moszyński, M. (2007). Chaotic behavior of semigroups related to the process of gene amplification–deamplification with cell proliferation. Mathematical Biosciences, 206(2), 200-215. doi:10.1016/j.mbs.2005.08.004 es_ES
dc.description.references Bayart, F., & Grivaux, S. (2006). Transactions of the American Mathematical Society, 358(11), 5083-5118. doi:10.1090/s0002-9947-06-04019-0 es_ES
dc.description.references Bermúdez, T., Bonilla, A., & Peris, A. (2004). On hypercyclicity and supercyclicity criteria. Bulletin of the Australian Mathematical Society, 70(1), 45-54. doi:10.1017/s0004972700035802 es_ES
dc.description.references Bermúdez, T., Bonilla, A., Conejero, J. A., & Peris, A. (2005). Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Studia Mathematica, 170(1), 57-75. doi:10.4064/sm170-1-3 es_ES
dc.description.references Bès, J., & Peris, A. (1999). Hereditarily Hypercyclic Operators. Journal of Functional Analysis, 167(1), 94-112. doi:10.1006/jfan.1999.3437 es_ES
dc.description.references Conejero, J. A., & Peris, A. (2005). Linear transitivity criteria. Topology and its Applications, 153(5-6), 767-773. doi:10.1016/j.topol.2005.01.009 es_ES
dc.description.references DESCH, W., SCHAPPACHER, W., & WEBB, G. F. (1997). Hypercyclic and chaotic semigroups of linear operators. Ergodic Theory and Dynamical Systems, 17(4), 793-819. doi:10.1017/s0143385797084976 es_ES
dc.description.references Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6 es_ES
dc.description.references Mourchid, S. E. (2006). The Imaginary Point Spectrum and Hypercyclicity. Semigroup Forum, 73(2), 313-316. doi:10.1007/s00233-005-0533-x es_ES
dc.description.references Godefroy, G., & Shapiro, J. H. (1991). Operators with dense, invariant, cyclic vector manifolds. Journal of Functional Analysis, 98(2), 229-269. doi:10.1016/0022-1236(91)90078-j es_ES
dc.description.references Grosse-Erdmann, K.-G., & Peris Manguillot, A. (2011). Linear Chaos. Universitext. doi:10.1007/978-1-4471-2170-1 es_ES
dc.description.references PROTOPOPESCU, V., & AZMY, Y. Y. (1992). TOPOLOGICAL CHAOS FOR A CLASS OF LINEAR MODELS. Mathematical Models and Methods in Applied Sciences, 02(01), 79-90. doi:10.1142/s0218202592000065 es_ES


This item appears in the following Collection(s)

Show simple item record