- -

Size-controlled photochemical synthesis of niobium nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Size-controlled photochemical synthesis of niobium nanoparticles

Mostrar el registro completo del ítem

Malyshev, D.; Bosca Mayans, F.; Crites, CL.; Hallett-Tapley, GL.; Netto-Ferreira, JC.; Alarcon, EI.; Scaiano, JC. (2013). Size-controlled photochemical synthesis of niobium nanoparticles. Dalton Transactions. 42(39):14049-14052. https://doi.org/10.1039/c3dt51167g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45086

Ficheros en el ítem

Metadatos del ítem

Título: Size-controlled photochemical synthesis of niobium nanoparticles
Autor: Malyshev, Dimitriy Bosca Mayans, Francisco Crites, Charles-Oneil L. Hallett-Tapley, Geniece L. Netto-Ferreira, José Carlos Alarcon, Emilio I. Scaiano, Juan C.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
The size of photochemically-prepared niobium nanoparticles (NbNP) can be controlled by varying the concentration of the photoinitiator in the reaction mixture. The particles, which may be metallic in nature, are readily ...[+]
Palabras clave: Passivated gold nanoparticles , Photoacid generation , Induced fusion , Oxidation , Catalyst , Radicals , Growth , Light , XPS
Derechos de uso: Cerrado
Fuente:
Dalton Transactions. (issn: 1477-9226 )
DOI: 10.1039/c3dt51167g
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c3dt51167g
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2010-19909/ES/MECANISMOS IMPLICADOS EN LA FOTO-REACTIVIDAD ENTRE FARMACOS CON PROPIEDADES ANTINEOPLASICAS Y SUS BIOMOLECULAS DIANA/
Agradecimientos:
We acknowledge the Natural Sciences and Engineering Research Council of Canada for support. J.C.N.-F. acknowledges the University of Ottawa for a Visiting Professor fellowship and F.B. acknowledges support from the Spanish ...[+]
Tipo: Artículo

References

McGilvray, K. L., Granger, J., Correia, M., Banks, J. T., & Scaiano, J. C. (2011). Opportunistic use of tetrachloroaurate photolysis in the generation of reductive species for the production of gold nanostructures. Physical Chemistry Chemical Physics, 13(25), 11914. doi:10.1039/c1cp20308h

Scaiano, J. C., Stamplecoskie, K. G., & Hallett-Tapley, G. L. (2012). Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chemical Communications, 48(40), 4798. doi:10.1039/c2cc30615h

Scaiano, J. C., Netto-Ferreira, J. C., Alarcon, E., Billone, P., Alejo, C. J. B., Crites, C.-O. L., … Wee, T.-L. (2011). Tuning plasmon transitions and their applications in organic photochemistry. Pure and Applied Chemistry, 83(4), 913-930. doi:10.1351/pac-con-11-01-09 [+]
McGilvray, K. L., Granger, J., Correia, M., Banks, J. T., & Scaiano, J. C. (2011). Opportunistic use of tetrachloroaurate photolysis in the generation of reductive species for the production of gold nanostructures. Physical Chemistry Chemical Physics, 13(25), 11914. doi:10.1039/c1cp20308h

Scaiano, J. C., Stamplecoskie, K. G., & Hallett-Tapley, G. L. (2012). Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chemical Communications, 48(40), 4798. doi:10.1039/c2cc30615h

Scaiano, J. C., Netto-Ferreira, J. C., Alarcon, E., Billone, P., Alejo, C. J. B., Crites, C.-O. L., … Wee, T.-L. (2011). Tuning plasmon transitions and their applications in organic photochemistry. Pure and Applied Chemistry, 83(4), 913-930. doi:10.1351/pac-con-11-01-09

McGilvray, K. L., Decan, M. R., Wang, D., & Scaiano, J. C. (2006). Facile Photochemical Synthesis of Unprotected Aqueous Gold Nanoparticles. Journal of the American Chemical Society, 128(50), 15980-15981. doi:10.1021/ja066522h

Niidome, Y., Hori, A., Sato, T., & Yamada, S. (2000). Enormous Size Growth of Thiol-passivated Gold Nanoparticles Induced by Near-IR Laser Light. Chemistry Letters, 29(4), 310-311. doi:10.1246/cl.2000.310

Takahashi, H., Niidome, Y., Sato, T., & Yamada, S. (2004). Effects of capping thiols on the laser-induced fusion of gold nanoparticles and deposition onto glass substrates in cyclohexane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 247(1-3), 105-113. doi:10.1016/j.colsurfa.2004.08.023

Pocoví-Martínez, S., Parreño-Romero, M., Agouram, S., & Pérez-Prieto, J. (2011). Controlled UV−C Light-Induced Fusion of Thiol-Passivated Gold Nanoparticles⊥. Langmuir, 27(9), 5234-5241. doi:10.1021/la2000443

Kell, A. J., Alizadeh, A., Yang, L., & Workentin, M. S. (2005). Monolayer-Protected Gold Nanoparticle Coalescence Induced by Photogenerated Radicals. Langmuir, 21(21), 9741-9746. doi:10.1021/la051655m

Consuelo Cuquerella, M., Pocoví-Martínez, S., & Pérez-Prieto, J. (2010). Photocatalytic Coalescence of Functionalized Gold Nanoparticles. Langmuir, 26(3), 1548-1550. doi:10.1021/la9040503

Scaiano, J. C., & Stamplecoskie, K. (2013). Can Surface Plasmon Fields Provide a New Way to Photosensitize Organic Photoreactions? From Designer Nanoparticles to Custom Applications. The Journal of Physical Chemistry Letters, 4(7), 1177-1187. doi:10.1021/jz400002a

Wayner, D. D. M., Dannenberg, J. J., & Griller, D. (1986). Oxidation potentials of α-aminoalkyl radicals: bond dissociation energies for related radical cations. Chemical Physics Letters, 131(3), 189-191. doi:10.1016/0009-2614(86)80542-5

Wayner, D. D. M., McPhee, D. J., & Griller, D. (1988). Oxidation and reduction potentials of transient free radicals. Journal of the American Chemical Society, 110(1), 132-137. doi:10.1021/ja00209a021

Aufray, M., Menuel, S., Fort, Y., Eschbach, J., Rouxel, D., & Vincent, B. (2009). New Synthesis of Nanosized Niobium Oxides and Lithium Niobate Particles and Their Characterization by XPS Analysis. Journal of Nanoscience and Nanotechnology, 9(8), 4780-4785. doi:10.1166/jnn.2009.1087

Grundner, M., & Halbritter, J. (1980). XPS and AES studies on oxide growth and oxide coatings on niobium. Journal of Applied Physics, 51(1), 397-405. doi:10.1063/1.327386

Wee, T.-L., Sherman, B. D., Gust, D., Moore, A. L., Moore, T. A., Liu, Y., & Scaiano, J. C. (2011). Photochemical Synthesis of a Water Oxidation Catalyst Based on Cobalt Nanostructures. Journal of the American Chemical Society, 133(42), 16742-16745. doi:10.1021/ja206280g

Nowak, I., & Ziolek, M. (1999). Niobium Compounds:  Preparation, Characterization, and Application in Heterogeneous Catalysis. Chemical Reviews, 99(12), 3603-3624. doi:10.1021/cr9800208

Nair, G. S., Adrijanto, E., Alsalme, A., Kozhevnikov, I. V., Cooke, D. J., Brown, D. R., & Shiju, N. R. (2012). Glycerol utilization: solvent-free acetalisation over niobia catalysts. Catalysis Science & Technology, 2(6), 1173. doi:10.1039/c2cy00335j

Marzo, M., Gervasini, A., & Carniti, P. (2012). Hydrolysis of disaccharides over solid acid catalysts under green conditions. Carbohydrate Research, 347(1), 23-31. doi:10.1016/j.carres.2011.10.018

Billone, P. S., Park, J. M., Blackwell, J. M., Bristol, R., & Scaiano, J. C. (2010). Two-Photon Acid Generation in Thin Polymer Films. Photoinduced Electron Transfer As a Promising Tool for Subwavelength Lithography. Chemistry of Materials, 22(1), 15-17. doi:10.1021/cm903313j

Pohlers, G., Scaiano, J. C., & Sinta, R. (1997). A Novel Photometric Method for the Determination of Photoacid Generation Efficiencies Using Benzothiazole and Xanthene Dyes as Acid Sensors. Chemistry of Materials, 9(12), 3222-3230. doi:10.1021/cm970587p

Feke, G. D., Grober, R. D., Pohlers, G., Moore, K., & Cameron, J. F. (2001). On-Wafer Spectrofluorometric Method for Determination of Relative Quantum Yields of Photoacid Generation in Chemically Amplified Resists. Analytical Chemistry, 73(14), 3472-3480. doi:10.1021/ac0015319

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem