Mostrar el registro sencillo del ítem
dc.contributor.author | Prohens Tomás, Jaime | es_ES |
dc.contributor.author | Whitaker, B. D. | es_ES |
dc.contributor.author | Plazas Ávila, María de la O | es_ES |
dc.contributor.author | Vilanova Navarro, Santiago | es_ES |
dc.contributor.author | Hurtado Ricart, María | es_ES |
dc.contributor.author | Blasco Villarroya, Manuel | es_ES |
dc.contributor.author | Gramazio, P. | es_ES |
dc.contributor.author | Stommel, J. R. | es_ES |
dc.date.accessioned | 2014-12-02T17:18:51Z | |
dc.date.available | 2014-12-02T17:18:51Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0003-4746 | |
dc.identifier.uri | http://hdl.handle.net/10251/45124 | |
dc.description.abstract | Solanum incanum, the wild ancestor of eggplant, Solanum melongena, has been considered as a source of variation for high content of phenolic acid conjugates in breeding programmes aimed at improving the functional quality of eggplant. We have evaluated the morphological and phenolic acids content in an interspecific family including S. incanum (P1), S. melongena (P2), their interspecific hybrid (F1), progeny from the selfing of the F1 (F2) and the backcross of the F1 to P2 (BC1P2). Many morphological differences were found between parents, while the F1 was intermediate for most traits. However, F1 plants were taller and pricklier and presented higher fruit flesh browning than any of the parents. F2 and BC1P2 were morphologically highly variable and the results obtained suggest that a rapid recovery of the characteristic combination of S. melongena traits can be achieved in a few backcross generations. Segregation for prickliness was found to be compatible with simple genetic control, prickliness being dominant over non-prickliness. A total of 16 phenolic acid conjugates were studied, of which chlorogenic acid (5-O-(E)-caffeoylquinic acid) was the most common compound in all samples, averaging 77.8% of all hydroxycinnamic acid derivatives. Contents of total phenolic acid conjugates were much higher in S. incanum than in S. melongena fruit flesh, and no major differences were found in the profile of phenolic acids among parents. The interspecific hybrid (F1) was intermediate between the two parents in phenolic acids content. Non-segregating generations presented considerable variation in phenolic acids content, but the range of variation was wider in segregating F2 and BC1P2 generations. Additive genetic effects were the most important in explaining the results obtained for the phenolic acids content. A number of BC1P2 plants presented a good combination of phenolic acids content and fruit weight or flesh browning. Overall, the results demonstrate that improvement of functional quality in S. melongena can be obtained using S. incanum as a donor of alleles for high phenolic acids content. | es_ES |
dc.description.sponsorship | This work was partially financed by the Ministerio de Ciencia y Tecnologia (AGL2009-07257 and RF-2008-00008-00-00). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Association of Applied Biologists | es_ES |
dc.relation.ispartof | Annals of Applied Biology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Breeding | es_ES |
dc.subject | Characterisation | es_ES |
dc.subject | Chlorogenic acid | es_ES |
dc.subject | Functional quality | es_ES |
dc.subject | Interspecific hybridisation | es_ES |
dc.subject | Introgression | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant (Solanum melongena) and its wild ancestor (S. incanum) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/aab.12017 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2009-07257/ES/MEJORA GENETICA DE LA CALIDAD NUTRECEUTICA DE LA BERENJENA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RF2008-00008-00-00/ES/Regeneración, caracterización y documentación de recursos genéticos de berenjena/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.description.bibliographicCitation | Prohens Tomás, J.; Whitaker, BD.; Plazas Ávila, MDLO.; Vilanova Navarro, S.; Hurtado Ricart, M.; Blasco Villarroya, M.; Gramazio, P.... (2013). Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant (Solanum melongena) and its wild ancestor (S. incanum). Annals of Applied Biology. 162(2):242-257. https://doi.org/10.1111/aab.12017 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.description.upvformatpinicio | 242 | es_ES |
dc.description.upvformatpfin | 257 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 162 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 254907 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Akanitapichat, P., Phraibung, K., Nuchklang, K., & Prompitakkul, S. (2010). Antioxidant and hepatoprotective activities of five eggplant varieties. Food and Chemical Toxicology, 48(10), 3017-3021. doi:10.1016/j.fct.2010.07.045 | es_ES |
dc.description.references | Azuma, K., Ohyama, A., Ippoushi, K., Ichiyanagi, T., Takeuchi, A., Saito, T., & Fukuoka, H. (2008). Structures and Antioxidant Activity of Anthocyanins in Many Accessions of Eggplant and Its Related Species. Journal of Agricultural and Food Chemistry, 56(21), 10154-10159. doi:10.1021/jf801322m | es_ES |
dc.description.references | Bassard, J.-E., Ullmann, P., Bernier, F., & Werck-Reichhart, D. (2010). Phenolamides: Bridging polyamines to the phenolic metabolism. Phytochemistry, 71(16), 1808-1824. doi:10.1016/j.phytochem.2010.08.003 | es_ES |
dc.description.references | Bradfield, M., & Stamp, N. (2004). Effect of Nighttime Temperature on Tomato Plant Defensive Chemistry. Journal of Chemical Ecology, 30(9), 1713-1721. doi:10.1023/b:joec.0000042397.42061.9f | es_ES |
dc.description.references | Cao, G., Sofic, E., & Prior, R. L. (1996). Antioxidant Capacity of Tea and Common Vegetables. Journal of Agricultural and Food Chemistry, 44(11), 3426-3431. doi:10.1021/jf9602535 | es_ES |
dc.description.references | Cho, A.-S., Jeon, S.-M., Kim, M.-J., Yeo, J., Seo, K.-I., Choi, M.-S., & Lee, M.-K. (2010). Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food and Chemical Toxicology, 48(3), 937-943. doi:10.1016/j.fct.2010.01.003 | es_ES |
dc.description.references | Clé, C., Hill, L. M., Niggeweg, R., Martin, C. R., Guisez, Y., Prinsen, E., & Jansen, M. A. K. (2008). Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry, 69(11), 2149-2156. doi:10.1016/j.phytochem.2008.04.024 | es_ES |
dc.description.references | COMAN, C., RUGINA, O. D., & SOCACIU, C. (2012). Plants and Natural Compounds with Antidiabetic Action. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 314. doi:10.15835/nbha4017205 | es_ES |
dc.description.references | Comino, C., Hehn, A., Moglia, A., Menin, B., Bourgaud, F., Lanteri, S., & Portis, E. (2009). The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biology, 9(1), 30. doi:10.1186/1471-2229-9-30 | es_ES |
dc.description.references | Dai, J., & Mumper, R. J. (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15(10), 7313-7352. doi:10.3390/molecules15107313 | es_ES |
dc.description.references | Do, C.-T., Pollet, B., Thévenin, J., Sibout, R., Denoue, D., Barrière, Y., … Jouanin, L. (2007). Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta, 226(5), 1117-1129. doi:10.1007/s00425-007-0558-3 | es_ES |
dc.description.references | Fita, A., Tarín, N., Prohens, J., & Rodríguez-Burruezo, A. (2010). A Software Tool for Teaching Backcross Breeding Simulation. HortTechnology, 20(6), 1049-1053. doi:10.21273/hortsci.20.6.1049 | es_ES |
dc.description.references | Frary, A., Doganlar, S., Daunay, M. C., & Tanksley, S. D. (2003). QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theoretical and Applied Genetics, 107(2), 359-370. doi:10.1007/s00122-003-1257-5 | es_ES |
dc.description.references | Friedman, M., & Jürgens, H. S. (2000). Effect of pH on the Stability of Plant Phenolic Compounds. Journal of Agricultural and Food Chemistry, 48(6), 2101-2110. doi:10.1021/jf990489j | es_ES |
dc.description.references | Fukuhara, K., & Kubo, I. (1991). Isolation of steroidal glycoalkaloids from Solanum incanum by two countercurrent chromatographic methods. Phytochemistry, 30(2), 685-687. doi:10.1016/0031-9422(91)83753-8 | es_ES |
dc.description.references | Gisbert, C., Prohens, J., Raigón, M. D., Stommel, J. R., & Nuez, F. (2011). Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae, 128(1), 14-22. doi:10.1016/j.scienta.2010.12.007 | es_ES |
dc.description.references | Hanson, P. M., Yang, R.-Y., Tsou, S. C. S., Ledesma, D., Engle, L., & Lee, T.-C. (2006). Diversity in eggplant (Solanum melongena) for superoxide scavenging activity, total phenolics, and ascorbic acid. Journal of Food Composition and Analysis, 19(6-7), 594-600. doi:10.1016/j.jfca.2006.03.001 | es_ES |
dc.description.references | Jenks, M. A., & Bebeli, P. J. (Eds.). (2011). Breeding for Fruit Quality. doi:10.1002/9780470959350 | es_ES |
dc.description.references | Kwon, Y.-I., Apostolidis, E., & Shetty, K. (2008). In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresource Technology, 99(8), 2981-2988. doi:10.1016/j.biortech.2007.06.035 | es_ES |
dc.description.references | Ky, C.-L., Louarn, J., Guyot, B., Charrier, A., Hamon, S., & Noirot, M. (1999). Relations between and inheritance of chlorogenic acid contents in an interspecific cross between Coffea pseudozanguebariae and Coffea liberica var ‘dewevrei’. Theoretical and Applied Genetics, 98(3-4), 628-637. doi:10.1007/s001220051114 | es_ES |
dc.description.references | Lee, W. J., & Zhu, B. T. (2005). Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis, 27(2), 269-277. doi:10.1093/carcin/bgi206 | es_ES |
dc.description.references | Lester, R. N. (1986). TAXONOMY OF SCARLET EGGPLANTS, SOLANUM AETHIOPICUM L. Acta Horticulturae, (182), 125-132. doi:10.17660/actahortic.1986.182.15 | es_ES |
dc.description.references | Lo Scalzo, R., Fibiani, M., Mennella, G., Rotino, G. L., Dal Sasso, M., Culici, M., … Braga, P. C. (2010). Thermal Treatment of Eggplant (Solanum melongenaL.) Increases the Antioxidant Content and the Inhibitory Effect on Human Neutrophil Burst. Journal of Agricultural and Food Chemistry, 58(6), 3371-3379. doi:10.1021/jf903881s | es_ES |
dc.description.references | López-Gresa, M. P., Torres, C., Campos, L., Lisón, P., Rodrigo, I., Bellés, J. M., & Conejero, V. (2011). Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environmental and Experimental Botany, 74, 216-228. doi:10.1016/j.envexpbot.2011.06.003 | es_ES |
dc.description.references | Luthria, D., Singh, A. P., Wilson, T., Vorsa, N., Banuelos, G. S., & Vinyard, B. T. (2010). Influence of conventional and organic agricultural practices on the phenolic content in eggplant pulp: Plant-to-plant variation. Food Chemistry, 121(2), 406-411. doi:10.1016/j.foodchem.2009.12.055 | es_ES |
dc.description.references | Ma, C., Whitaker, B. D., & Kennelly, E. J. (2010). New 5-O-Caffeoylquinic Acid Derivatives in Fruit of the Wild Eggplant RelativeSolanum viarum. Journal of Agricultural and Food Chemistry, 58(20), 11036-11042. doi:10.1021/jf102963f | es_ES |
dc.description.references | Ma, C., Dastmalchi, K., Whitaker, B. D., & Kennelly, E. J. (2011). Two New Antioxidant Malonated Caffeoylquinic Acid Isomers in Fruits of Wild Eggplant Relatives. Journal of Agricultural and Food Chemistry, 59(17), 9645-9651. doi:10.1021/jf202028y | es_ES |
dc.description.references | Mather, K., & Jinks, J. L. (1977). Introduction to Biometrical Genetics. doi:10.1007/978-94-009-5787-9 | es_ES |
dc.description.references | McDougall, B., King, P. J., Wu, B. W., Hostomsky, Z., Reinecke, M. G., & Robinson, W. E. (1998). Dicaffeoylquinic and Dicaffeoyltartaric Acids Are Selective Inhibitors of Human Immunodeficiency Virus Type 1 Integrase. Antimicrobial Agents and Chemotherapy, 42(1), 140-146. doi:10.1128/aac.42.1.140 | es_ES |
dc.description.references | Mennella, G., Rotino, G. L., Fibiani, M., D’Alessandro, A., Francese, G., Toppino, L., … Lo Scalzo, R. (2010). Characterization of Health-Related Compounds in Eggplant (Solanum melongenaL.) Lines Derived from Introgression of Allied Species. Journal of Agricultural and Food Chemistry, 58(13), 7597-7603. doi:10.1021/jf101004z | es_ES |
dc.description.references | Meyer, R. S., Karol, K. G., Little, D. P., Nee, M. H., & Litt, A. (2012). Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Molecular Phylogenetics and Evolution, 63(3), 685-701. doi:10.1016/j.ympev.2012.02.006 | es_ES |
dc.description.references | Okmen, B., Sigva, H. O., Mutlu, S., Doganlar, S., Yemenicioglu, A., & Frary, A. (2009). Total Antioxidant Activity and Total Phenolic Contents in Different Turkish Eggplant (Solanum Melongena L.) Cultivars. International Journal of Food Properties, 12(3), 616-624. doi:10.1080/10942910801992942 | es_ES |
dc.description.references | Paran, I., & van der Knaap, E. (2007). Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. Journal of Experimental Botany, 58(14), 3841-3852. doi:10.1093/jxb/erm257 | es_ES |
dc.description.references | Prabhu, M., Natarajan, S., Veeraragavathatham, D., & Pugalendhi, L. (2009). The biochemical basis of shoot and fruit borer resistance in interspecific progenies of brinjal (Solanum melongena). EurAsian Journal of Biosciences, 50-57. doi:10.5053/ejobios.2009.3.0.7 | es_ES |
dc.description.references | Prohens, J., Blanca, J. M., & Nuez, F. (2005). Morphological and Molecular Variation in a Collection of Eggplants from a Secondary Center of Diversity: Implications for Conservation and Breeding. Journal of the American Society for Horticultural Science, 130(1), 54-63. doi:10.21273/jashs.130.1.54 | es_ES |
dc.description.references | Prohens, J., Rodríguez-Burruezo, A., Raigón, M. D., & Nuez, F. (2007). Total Phenolic Concentration and Browning Susceptibility in a Collection of Different Varietal Types and Hybrids of Eggplant: Implications for Breeding for Higher Nutritional Quality and Reduced Browning. Journal of the American Society for Horticultural Science, 132(5), 638-646. doi:10.21273/jashs.132.5.638 | es_ES |
dc.description.references | Prohens, J., Muñoz-Falcón, J. E., Rodríguez-Burruezo, A., & Nuez, F. (2008). STRATEGIES FOR THE BREEDING OF EGGPLANTS WITH IMPROVED NUTRITIONAL QUALITY. Acta Horticulturae, (767), 285-292. doi:10.17660/actahortic.2008.767.30 | es_ES |
dc.description.references | Prohens, J., Plazas, M., Raigón, M. D., Seguí-Simarro, J. M., Stommel, J. R., & Vilanova, S. (2012). Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica, 186(2), 517-538. doi:10.1007/s10681-012-0652-x | es_ES |
dc.description.references | Queiroz, C., Mendes Lopes, M. L., Fialho, E., & Valente-Mesquita, V. L. (2008). Polyphenol Oxidase: Characteristics and Mechanisms of Browning Control. Food Reviews International, 24(4), 361-375. doi:10.1080/87559120802089332 | es_ES |
dc.description.references | Dos Santos, M. D., Almeida, M. C., Lopes, N. P., & de Souza, G. E. P. (2006). Evaluation of the Anti-inflammatory, Analgesic and Antipyretic Activities of the Natural Polyphenol Chlorogenic Acid. Biological & Pharmaceutical Bulletin, 29(11), 2236-2240. doi:10.1248/bpb.29.2236 | es_ES |
dc.description.references | Sawa, T., Nakao, M., Akaike, T., Ono, K., & Maeda, H. (1999). Alkylperoxyl Radical-Scavenging Activity of Various Flavonoids and Other Phenolic Compounds: Implications for the Anti-Tumor-Promoter Effect of Vegetables. Journal of Agricultural and Food Chemistry, 47(2), 397-402. doi:10.1021/jf980765e | es_ES |
dc.description.references | Singh, A. P., Luthria, D., Wilson, T., Vorsa, N., Singh, V., Banuelos, G. S., & Pasakdee, S. (2009). Polyphenols content and antioxidant capacity of eggplant pulp. Food Chemistry, 114(3), 955-961. doi:10.1016/j.foodchem.2008.10.048 | es_ES |
dc.description.references | Stommel, J. R., & Whitaker, B. D. (2003). Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. Journal of the American Society for Horticultural Science, 128(5), 704-710. doi:10.21273/jashs.128.5.0704 | es_ES |
dc.description.references | Triantis, T., Stelakis, A., Dimotikali, D., & Papadopoulos, K. (2005). Investigations on the antioxidant activity of fruit and vegetable aqueous extracts on superoxide radical anion using chemiluminescence techniques. Analytica Chimica Acta, 536(1-2), 101-105. doi:10.1016/j.aca.2004.11.048 | es_ES |
dc.description.references | Van der Weerden, G. M., & Barendse, G. W. M. (2007). A WEB-BASED SEARCHABLE DATABASE DEVELOPED FOR THE EGGNET PROJECT AND APPLIED TO THE RADBOUD UNIVERSITY SOLANACEAE DATABASE. Acta Horticulturae, (745), 503-506. doi:10.17660/actahortic.2007.745.37 | es_ES |
dc.description.references | Weese, T. L., & Bohs, L. (2010). Eggplant origins: Out of Africa, into the Orient. TAXON, 59(1), 49-56. doi:10.1002/tax.591006 | es_ES |
dc.description.references | Whitaker, B. D., & Stommel, J. R. (2003). Distribution of Hydroxycinnamic Acid Conjugates in Fruit of Commercial Eggplant (Solanum melongenaL.) Cultivars. Journal of Agricultural and Food Chemistry, 51(11), 3448-3454. doi:10.1021/jf026250b | es_ES |