- -

Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant (Solanum melongena) and its wild ancestor (S. incanum)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant (Solanum melongena) and its wild ancestor (S. incanum)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Whitaker, B. D. es_ES
dc.contributor.author Plazas Ávila, María de la O es_ES
dc.contributor.author Vilanova Navarro, Santiago es_ES
dc.contributor.author Hurtado Ricart, María es_ES
dc.contributor.author Blasco Villarroya, Manuel es_ES
dc.contributor.author Gramazio, P. es_ES
dc.contributor.author Stommel, J. R. es_ES
dc.date.accessioned 2014-12-02T17:18:51Z
dc.date.available 2014-12-02T17:18:51Z
dc.date.issued 2013
dc.identifier.issn 0003-4746
dc.identifier.uri http://hdl.handle.net/10251/45124
dc.description.abstract Solanum incanum, the wild ancestor of eggplant, Solanum melongena, has been considered as a source of variation for high content of phenolic acid conjugates in breeding programmes aimed at improving the functional quality of eggplant. We have evaluated the morphological and phenolic acids content in an interspecific family including S. incanum (P1), S. melongena (P2), their interspecific hybrid (F1), progeny from the selfing of the F1 (F2) and the backcross of the F1 to P2 (BC1P2). Many morphological differences were found between parents, while the F1 was intermediate for most traits. However, F1 plants were taller and pricklier and presented higher fruit flesh browning than any of the parents. F2 and BC1P2 were morphologically highly variable and the results obtained suggest that a rapid recovery of the characteristic combination of S. melongena traits can be achieved in a few backcross generations. Segregation for prickliness was found to be compatible with simple genetic control, prickliness being dominant over non-prickliness. A total of 16 phenolic acid conjugates were studied, of which chlorogenic acid (5-O-(E)-caffeoylquinic acid) was the most common compound in all samples, averaging 77.8% of all hydroxycinnamic acid derivatives. Contents of total phenolic acid conjugates were much higher in S. incanum than in S. melongena fruit flesh, and no major differences were found in the profile of phenolic acids among parents. The interspecific hybrid (F1) was intermediate between the two parents in phenolic acids content. Non-segregating generations presented considerable variation in phenolic acids content, but the range of variation was wider in segregating F2 and BC1P2 generations. Additive genetic effects were the most important in explaining the results obtained for the phenolic acids content. A number of BC1P2 plants presented a good combination of phenolic acids content and fruit weight or flesh browning. Overall, the results demonstrate that improvement of functional quality in S. melongena can be obtained using S. incanum as a donor of alleles for high phenolic acids content. es_ES
dc.description.sponsorship This work was partially financed by the Ministerio de Ciencia y Tecnologia (AGL2009-07257 and RF-2008-00008-00-00). en_EN
dc.language Inglés es_ES
dc.publisher Association of Applied Biologists es_ES
dc.relation.ispartof Annals of Applied Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Breeding es_ES
dc.subject Characterisation es_ES
dc.subject Chlorogenic acid es_ES
dc.subject Functional quality es_ES
dc.subject Interspecific hybridisation es_ES
dc.subject Introgression es_ES
dc.subject.classification GENETICA es_ES
dc.title Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant (Solanum melongena) and its wild ancestor (S. incanum) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/aab.12017
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2009-07257/ES/MEJORA GENETICA DE LA CALIDAD NUTRECEUTICA DE LA BERENJENA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RF2008-00008-00-00/ES/Regeneración, caracterización y documentación de recursos genéticos de berenjena/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Prohens Tomás, J.; Whitaker, BD.; Plazas Ávila, MDLO.; Vilanova Navarro, S.; Hurtado Ricart, M.; Blasco Villarroya, M.; Gramazio, P.... (2013). Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant (Solanum melongena) and its wild ancestor (S. incanum). Annals of Applied Biology. 162(2):242-257. https://doi.org/10.1111/aab.12017 es_ES
dc.description.accrualMethod S es_ES
dc.description.upvformatpinicio 242 es_ES
dc.description.upvformatpfin 257 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 162 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 254907
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Akanitapichat, P., Phraibung, K., Nuchklang, K., & Prompitakkul, S. (2010). Antioxidant and hepatoprotective activities of five eggplant varieties. Food and Chemical Toxicology, 48(10), 3017-3021. doi:10.1016/j.fct.2010.07.045 es_ES
dc.description.references Azuma, K., Ohyama, A., Ippoushi, K., Ichiyanagi, T., Takeuchi, A., Saito, T., & Fukuoka, H. (2008). Structures and Antioxidant Activity of Anthocyanins in Many Accessions of Eggplant and Its Related Species. Journal of Agricultural and Food Chemistry, 56(21), 10154-10159. doi:10.1021/jf801322m es_ES
dc.description.references Bassard, J.-E., Ullmann, P., Bernier, F., & Werck-Reichhart, D. (2010). Phenolamides: Bridging polyamines to the phenolic metabolism. Phytochemistry, 71(16), 1808-1824. doi:10.1016/j.phytochem.2010.08.003 es_ES
dc.description.references Bradfield, M., & Stamp, N. (2004). Effect of Nighttime Temperature on Tomato Plant Defensive Chemistry. Journal of Chemical Ecology, 30(9), 1713-1721. doi:10.1023/b:joec.0000042397.42061.9f es_ES
dc.description.references Cao, G., Sofic, E., & Prior, R. L. (1996). Antioxidant Capacity of Tea and Common Vegetables. Journal of Agricultural and Food Chemistry, 44(11), 3426-3431. doi:10.1021/jf9602535 es_ES
dc.description.references Cho, A.-S., Jeon, S.-M., Kim, M.-J., Yeo, J., Seo, K.-I., Choi, M.-S., & Lee, M.-K. (2010). Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food and Chemical Toxicology, 48(3), 937-943. doi:10.1016/j.fct.2010.01.003 es_ES
dc.description.references Clé, C., Hill, L. M., Niggeweg, R., Martin, C. R., Guisez, Y., Prinsen, E., & Jansen, M. A. K. (2008). Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry, 69(11), 2149-2156. doi:10.1016/j.phytochem.2008.04.024 es_ES
dc.description.references COMAN, C., RUGINA, O. D., & SOCACIU, C. (2012). Plants and Natural Compounds with Antidiabetic Action. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 314. doi:10.15835/nbha4017205 es_ES
dc.description.references Comino, C., Hehn, A., Moglia, A., Menin, B., Bourgaud, F., Lanteri, S., & Portis, E. (2009). The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biology, 9(1), 30. doi:10.1186/1471-2229-9-30 es_ES
dc.description.references Dai, J., & Mumper, R. J. (2010). Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules, 15(10), 7313-7352. doi:10.3390/molecules15107313 es_ES
dc.description.references Do, C.-T., Pollet, B., Thévenin, J., Sibout, R., Denoue, D., Barrière, Y., … Jouanin, L. (2007). Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta, 226(5), 1117-1129. doi:10.1007/s00425-007-0558-3 es_ES
dc.description.references Fita, A., Tarín, N., Prohens, J., & Rodríguez-Burruezo, A. (2010). A Software Tool for Teaching Backcross Breeding Simulation. HortTechnology, 20(6), 1049-1053. doi:10.21273/hortsci.20.6.1049 es_ES
dc.description.references Frary, A., Doganlar, S., Daunay, M. C., & Tanksley, S. D. (2003). QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theoretical and Applied Genetics, 107(2), 359-370. doi:10.1007/s00122-003-1257-5 es_ES
dc.description.references Friedman, M., & Jürgens, H. S. (2000). Effect of pH on the Stability of Plant Phenolic Compounds. Journal of Agricultural and Food Chemistry, 48(6), 2101-2110. doi:10.1021/jf990489j es_ES
dc.description.references Fukuhara, K., & Kubo, I. (1991). Isolation of steroidal glycoalkaloids from Solanum incanum by two countercurrent chromatographic methods. Phytochemistry, 30(2), 685-687. doi:10.1016/0031-9422(91)83753-8 es_ES
dc.description.references Gisbert, C., Prohens, J., Raigón, M. D., Stommel, J. R., & Nuez, F. (2011). Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae, 128(1), 14-22. doi:10.1016/j.scienta.2010.12.007 es_ES
dc.description.references Hanson, P. M., Yang, R.-Y., Tsou, S. C. S., Ledesma, D., Engle, L., & Lee, T.-C. (2006). Diversity in eggplant (Solanum melongena) for superoxide scavenging activity, total phenolics, and ascorbic acid. Journal of Food Composition and Analysis, 19(6-7), 594-600. doi:10.1016/j.jfca.2006.03.001 es_ES
dc.description.references Jenks, M. A., & Bebeli, P. J. (Eds.). (2011). Breeding for Fruit Quality. doi:10.1002/9780470959350 es_ES
dc.description.references Kwon, Y.-I., Apostolidis, E., & Shetty, K. (2008). In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresource Technology, 99(8), 2981-2988. doi:10.1016/j.biortech.2007.06.035 es_ES
dc.description.references Ky, C.-L., Louarn, J., Guyot, B., Charrier, A., Hamon, S., & Noirot, M. (1999). Relations between and inheritance of chlorogenic acid contents in an interspecific cross between Coffea pseudozanguebariae and Coffea liberica var ‘dewevrei’. Theoretical and Applied Genetics, 98(3-4), 628-637. doi:10.1007/s001220051114 es_ES
dc.description.references Lee, W. J., & Zhu, B. T. (2005). Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis, 27(2), 269-277. doi:10.1093/carcin/bgi206 es_ES
dc.description.references Lester, R. N. (1986). TAXONOMY OF SCARLET EGGPLANTS, SOLANUM AETHIOPICUM L. Acta Horticulturae, (182), 125-132. doi:10.17660/actahortic.1986.182.15 es_ES
dc.description.references Lo Scalzo, R., Fibiani, M., Mennella, G., Rotino, G. L., Dal Sasso, M., Culici, M., … Braga, P. C. (2010). Thermal Treatment of Eggplant (Solanum melongenaL.) Increases the Antioxidant Content and the Inhibitory Effect on Human Neutrophil Burst. Journal of Agricultural and Food Chemistry, 58(6), 3371-3379. doi:10.1021/jf903881s es_ES
dc.description.references López-Gresa, M. P., Torres, C., Campos, L., Lisón, P., Rodrigo, I., Bellés, J. M., & Conejero, V. (2011). Identification of defence metabolites in tomato plants infected by the bacterial pathogen Pseudomonas syringae. Environmental and Experimental Botany, 74, 216-228. doi:10.1016/j.envexpbot.2011.06.003 es_ES
dc.description.references Luthria, D., Singh, A. P., Wilson, T., Vorsa, N., Banuelos, G. S., & Vinyard, B. T. (2010). Influence of conventional and organic agricultural practices on the phenolic content in eggplant pulp: Plant-to-plant variation. Food Chemistry, 121(2), 406-411. doi:10.1016/j.foodchem.2009.12.055 es_ES
dc.description.references Ma, C., Whitaker, B. D., & Kennelly, E. J. (2010). New 5-O-Caffeoylquinic Acid Derivatives in Fruit of the Wild Eggplant RelativeSolanum viarum. Journal of Agricultural and Food Chemistry, 58(20), 11036-11042. doi:10.1021/jf102963f es_ES
dc.description.references Ma, C., Dastmalchi, K., Whitaker, B. D., & Kennelly, E. J. (2011). Two New Antioxidant Malonated Caffeoylquinic Acid Isomers in Fruits of Wild Eggplant Relatives. Journal of Agricultural and Food Chemistry, 59(17), 9645-9651. doi:10.1021/jf202028y es_ES
dc.description.references Mather, K., & Jinks, J. L. (1977). Introduction to Biometrical Genetics. doi:10.1007/978-94-009-5787-9 es_ES
dc.description.references McDougall, B., King, P. J., Wu, B. W., Hostomsky, Z., Reinecke, M. G., & Robinson, W. E. (1998). Dicaffeoylquinic and Dicaffeoyltartaric Acids Are Selective Inhibitors of Human Immunodeficiency Virus Type 1 Integrase. Antimicrobial Agents and Chemotherapy, 42(1), 140-146. doi:10.1128/aac.42.1.140 es_ES
dc.description.references Mennella, G., Rotino, G. L., Fibiani, M., D’Alessandro, A., Francese, G., Toppino, L., … Lo Scalzo, R. (2010). Characterization of Health-Related Compounds in Eggplant (Solanum melongenaL.) Lines Derived from Introgression of Allied Species. Journal of Agricultural and Food Chemistry, 58(13), 7597-7603. doi:10.1021/jf101004z es_ES
dc.description.references Meyer, R. S., Karol, K. G., Little, D. P., Nee, M. H., & Litt, A. (2012). Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Molecular Phylogenetics and Evolution, 63(3), 685-701. doi:10.1016/j.ympev.2012.02.006 es_ES
dc.description.references Okmen, B., Sigva, H. O., Mutlu, S., Doganlar, S., Yemenicioglu, A., & Frary, A. (2009). Total Antioxidant Activity and Total Phenolic Contents in Different Turkish Eggplant (Solanum Melongena L.) Cultivars. International Journal of Food Properties, 12(3), 616-624. doi:10.1080/10942910801992942 es_ES
dc.description.references Paran, I., & van der Knaap, E. (2007). Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. Journal of Experimental Botany, 58(14), 3841-3852. doi:10.1093/jxb/erm257 es_ES
dc.description.references Prabhu, M., Natarajan, S., Veeraragavathatham, D., & Pugalendhi, L. (2009). The biochemical basis of shoot and fruit borer resistance in interspecific progenies of brinjal (Solanum melongena). EurAsian Journal of Biosciences, 50-57. doi:10.5053/ejobios.2009.3.0.7 es_ES
dc.description.references Prohens, J., Blanca, J. M., & Nuez, F. (2005). Morphological and Molecular Variation in a Collection of Eggplants from a Secondary Center of Diversity: Implications for Conservation and Breeding. Journal of the American Society for Horticultural Science, 130(1), 54-63. doi:10.21273/jashs.130.1.54 es_ES
dc.description.references Prohens, J., Rodríguez-Burruezo, A., Raigón, M. D., & Nuez, F. (2007). Total Phenolic Concentration and Browning Susceptibility in a Collection of Different Varietal Types and Hybrids of Eggplant: Implications for Breeding for Higher Nutritional Quality and Reduced Browning. Journal of the American Society for Horticultural Science, 132(5), 638-646. doi:10.21273/jashs.132.5.638 es_ES
dc.description.references Prohens, J., Muñoz-Falcón, J. E., Rodríguez-Burruezo, A., & Nuez, F. (2008). STRATEGIES FOR THE BREEDING OF EGGPLANTS WITH IMPROVED NUTRITIONAL QUALITY. Acta Horticulturae, (767), 285-292. doi:10.17660/actahortic.2008.767.30 es_ES
dc.description.references Prohens, J., Plazas, M., Raigón, M. D., Seguí-Simarro, J. M., Stommel, J. R., & Vilanova, S. (2012). Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica, 186(2), 517-538. doi:10.1007/s10681-012-0652-x es_ES
dc.description.references Queiroz, C., Mendes Lopes, M. L., Fialho, E., & Valente-Mesquita, V. L. (2008). Polyphenol Oxidase: Characteristics and Mechanisms of Browning Control. Food Reviews International, 24(4), 361-375. doi:10.1080/87559120802089332 es_ES
dc.description.references Dos Santos, M. D., Almeida, M. C., Lopes, N. P., & de Souza, G. E. P. (2006). Evaluation of the Anti-inflammatory, Analgesic and Antipyretic Activities of the Natural Polyphenol Chlorogenic Acid. Biological & Pharmaceutical Bulletin, 29(11), 2236-2240. doi:10.1248/bpb.29.2236 es_ES
dc.description.references Sawa, T., Nakao, M., Akaike, T., Ono, K., & Maeda, H. (1999). Alkylperoxyl Radical-Scavenging Activity of Various Flavonoids and Other Phenolic Compounds:  Implications for the Anti-Tumor-Promoter Effect of Vegetables. Journal of Agricultural and Food Chemistry, 47(2), 397-402. doi:10.1021/jf980765e es_ES
dc.description.references Singh, A. P., Luthria, D., Wilson, T., Vorsa, N., Singh, V., Banuelos, G. S., & Pasakdee, S. (2009). Polyphenols content and antioxidant capacity of eggplant pulp. Food Chemistry, 114(3), 955-961. doi:10.1016/j.foodchem.2008.10.048 es_ES
dc.description.references Stommel, J. R., & Whitaker, B. D. (2003). Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. Journal of the American Society for Horticultural Science, 128(5), 704-710. doi:10.21273/jashs.128.5.0704 es_ES
dc.description.references Triantis, T., Stelakis, A., Dimotikali, D., & Papadopoulos, K. (2005). Investigations on the antioxidant activity of fruit and vegetable aqueous extracts on superoxide radical anion using chemiluminescence techniques. Analytica Chimica Acta, 536(1-2), 101-105. doi:10.1016/j.aca.2004.11.048 es_ES
dc.description.references Van der Weerden, G. M., & Barendse, G. W. M. (2007). A WEB-BASED SEARCHABLE DATABASE DEVELOPED FOR THE EGGNET PROJECT AND APPLIED TO THE RADBOUD UNIVERSITY SOLANACEAE DATABASE. Acta Horticulturae, (745), 503-506. doi:10.17660/actahortic.2007.745.37 es_ES
dc.description.references Weese, T. L., & Bohs, L. (2010). Eggplant origins: Out of Africa, into the Orient. TAXON, 59(1), 49-56. doi:10.1002/tax.591006 es_ES
dc.description.references Whitaker, B. D., & Stommel, J. R. (2003). Distribution of Hydroxycinnamic Acid Conjugates in Fruit of Commercial Eggplant (Solanum melongenaL.) Cultivars. Journal of Agricultural and Food Chemistry, 51(11), 3448-3454. doi:10.1021/jf026250b es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem