- -

Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation

Mostrar el registro completo del ítem

Alcaraz, R.; Hornero, F.; Martinez, A.; Rieta, JJ. (2012). Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation. Physiological Measurement. 33(6):969-984. https://doi.org/10.1088/0967-3334/33/6/969

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/45191

Ficheros en el ítem

Metadatos del ítem

Título: Short-time regularity assessment of fibrillatory waves from the surface ECG in atrial fibrillation
Autor: Alcaraz, Raul Hornero, Fernando Martinez, Arturo Rieta, J J
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Grupo de ingeniería en bioseñales e imagen radiológica
Fecha difusión:
Resumen:
This paper proposes the first non-invasive method for direct and short-time regularity quantification of atrial fibrillatory (f) waves from the surface ECG in atrial fibrillation (AF). Regularity is estimated by computing ...[+]
Palabras clave: Atrial fibrillation , ECG , Fibrillatory wave regularity , Signal processing , Waveform morphology
Derechos de uso: Cerrado
Fuente:
Physiological Measurement. (issn: 0967-3334 )
DOI: 10.1088/0967-3334/33/6/969
Editorial:
IOP Publishing: Hybrid Open Access
Versión del editor: http://dx.doi.org/10.1088/0967-3334/33/6/969
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TEC2010-20633/ES/DESARROLLO Y APLICACION DE ESTIMADORES AVANZADOS DE ORGANIZACION PARA LA CLASIFICACION TERAPEUTICA Y EL SEGUIMIENTO DE PACIENTES CON FIBRILACION AURICULAR/
info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PII1C09-0036-3237/ES/Predicción De Riesgo De Muerte Súbita Tras Infarto De Miocardio Mediante Técnicas Avanzadas De Procesado Digital De Señal/
info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PPII11-0194-8121]/ES/PPII11-0194-8121]/
Agradecimientos:
The authors are grateful to Drs Javier Vinas, Elio Martin and Alejandro Vazquez for their contribution to classify blindly the AF episodes used in this work. This work was supported by the projects TEC2010-20633 from the ...[+]
Tipo: Artículo

References

Alcaraz, R., Abásolo, D., Hornero, R., & Rieta, J. J. (2010). Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Computer Methods and Programs in Biomedicine, 99(1), 124-132. doi:10.1016/j.cmpb.2010.02.009

Alcaraz, R., Hornero, F., & Rieta, J. J. (2010). Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms. Physiological Measurement, 32(1), 99-114. doi:10.1088/0967-3334/32/1/007

Alcaraz, R., & Rieta, J. J. (2008). Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiological Measurement, 29(12), 1351-1369. doi:10.1088/0967-3334/29/12/001 [+]
Alcaraz, R., Abásolo, D., Hornero, R., & Rieta, J. J. (2010). Optimal parameters study for sample entropy-based atrial fibrillation organization analysis. Computer Methods and Programs in Biomedicine, 99(1), 124-132. doi:10.1016/j.cmpb.2010.02.009

Alcaraz, R., Hornero, F., & Rieta, J. J. (2010). Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms. Physiological Measurement, 32(1), 99-114. doi:10.1088/0967-3334/32/1/007

Alcaraz, R., & Rieta, J. J. (2008). Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms. Physiological Measurement, 29(12), 1351-1369. doi:10.1088/0967-3334/29/12/001

Alcaraz, R., & Rieta, J. J. (2010). A review on sample entropy applications for the non-invasive analysis of atrial fibrillation electrocardiograms. Biomedical Signal Processing and Control, 5(1), 1-14. doi:10.1016/j.bspc.2009.11.001

Bollmann, A., Husser, D., Mainardi, L., Lombardi, F., Langley, P., Murray, A., … Sörnmo, L. (2006). Analysis of surface electrocardiograms in atrial fibrillation: techniques, research, and clinical applications. EP Europace, 8(11), 911-926. doi:10.1093/europace/eul113

Bollmann, A. (1999). Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the Holter ECG. Cardiovascular Research, 44(1), 60-66. doi:10.1016/s0008-6363(99)00156-x

Calcagnini, G., Censi, F., Michelucci, A., & Bartolini, P. (2006). Descriptors of wavefront propagation. IEEE Engineering in Medicine and Biology Magazine, 25(6), 71-78. doi:10.1109/emb-m.2006.250510

Capucci, A., Biffi, M., Boriani, G., Ravelli, F., Nollo, G., Sabbatani, P., … Magnani, B. (1995). Dynamic Electrophysiological Behavior of Human Atria During Paroxysmal Atrial Fibrillation. Circulation, 92(5), 1193-1202. doi:10.1161/01.cir.92.5.1193

CAPUCCI, A., RAVELLI, F., NOLLO, G., MONTENERO, A. S., BIEFL, M., & VILLANI, G. Q. (1999). Capture Window in Human Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 10(3), 319-327. doi:10.1111/j.1540-8167.1999.tb00678.x

Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1), 61-68. doi:10.1016/j.medengphy.2008.04.005

Everett, T. H., Lai-Chow Kok, Vaughn, R. H., Moorman, R., & Haines, D. E. (2001). Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Transactions on Biomedical Engineering, 48(9), 969-978. doi:10.1109/10.942586

Faes, L., Nollo, G., Antolini, R., Gaita, F., & Ravelli, F. (2002). A method for quantifying atrial fibrillation organization based on wave-morphology similarity. IEEE Transactions on Biomedical Engineering, 49(12), 1504-1513. doi:10.1109/tbme.2002.805472

Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., … Ellenbogen, K. A. (2006). ACC/AHA/ESC 2006 Guidelines for the Management of Patients With Atrial Fibrillation. Circulation, 114(7). doi:10.1161/circulationaha.106.177292

Fynn, S. P., Todd, D. M., Julian, W., Hobbs, C., Armstrong, K. L., Fitzpatrick, P., & Garratt, C. J. (2003). Effect of Amiodarone on Dispersion of Atrial Refractoriness and Cycle Length in Patients with Atrial Fibrillation. Journal of Cardiovascular Electrophysiology, 14(5), 485-491. doi:10.1046/j.1540-8167.2003.02388.x

Goyal, R., Harvey, M., Daoud, E. G., Brinkman, K., Knight, B. P., Bahu, M., … Morady, F. (1996). Effect of Coupling Interval and Pacing Cycle Length on Morphology of Paced Ventricular Complexes. Circulation, 94(11), 2843-2849. doi:10.1161/01.cir.94.11.2843

Holm, M. (1998). Non-invasive assessment of the atrial cycle length during atrial fibrillation in man: introducing, validating and illustrating a new ECG method. Cardiovascular Research, 38(1), 69-81. doi:10.1016/s0008-6363(97)00289-7

Hsu, N.-W., Lin, Y.-J., Tai, C.-T., Kao, T., Chang, S.-L., Wongcharoen, W., … Chen, S.-A. (2008). Frequency analysis of the fibrillatory activity from surface ECG lead V1 and intracardiac recordings: implications for mapping of AF. Europace, 10(4), 438-443. doi:10.1093/europace/eun045

Jalife, J. (2002). Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovascular Research, 54(2), 204-216. doi:10.1016/s0008-6363(02)00223-7

Konings, K. T., Kirchhof, C. J., Smeets, J. R., Wellens, H. J., Penn, O. C., & Allessie, M. A. (1994). High-density mapping of electrically induced atrial fibrillation in humans. Circulation, 89(4), 1665-1680. doi:10.1161/01.cir.89.4.1665

Konings, K. T. S., Smeets, J. L. R. M., Penn, O. C., Wellens, H. J. J., & Allessie, M. A. (1997). Configuration of Unipolar Atrial Electrograms During Electrically Induced Atrial Fibrillation in Humans. Circulation, 95(5), 1231-1241. doi:10.1161/01.cir.95.5.1231

Kupeev, K. Y. (1996). On significant maxima detection: a fine-to-coarse algorithm. Proceedings of 13th International Conference on Pattern Recognition. doi:10.1109/icpr.1996.546831

Lian, J., Garner, G., Muessig, D., & Lang, V. (2010). A simple method to quantify the morphological similarity between signals. Signal Processing, 90(2), 684-688. doi:10.1016/j.sigpro.2009.07.010

Maragos, P., & Schafer, R. (1987). Morphological filters--Part I: Their set-theoretic analysis and relations to linear shift-invariant filters. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(8), 1153-1169. doi:10.1109/tassp.1987.1165259

Maragos, P., & Schafer, R. W. (1990). Morphological systems for multidimensional signal processing. Proceedings of the IEEE, 78(4), 690-710. doi:10.1109/5.54808

Masè, M., Faes, L., Antolini, R., Scaglione, M., & Ravelli, F. (2005). Quantification of synchronization during atrial fibrillation by Shannon entropy: validation in patients and computer model of atrial arrhythmias. Physiological Measurement, 26(6), 911-923. doi:10.1088/0967-3334/26/6/003

Matsuo, S., Lellouche, N., Wright, M., Bevilacqua, M., Knecht, S., Nault, I., … Haïssaguerre, M. (2009). Clinical Predictors of Termination and Clinical Outcome of Catheter Ablation for Persistent Atrial Fibrillation. Journal of the American College of Cardiology, 54(9), 788-795. doi:10.1016/j.jacc.2009.01.081

NG, J., & GOLDBERGER, J. J. (2007). Understanding and Interpreting Dominant Frequency Analysis of AF Electrograms. Journal of Cardiovascular Electrophysiology, 18(6), 680-685. doi:10.1111/j.1540-8167.2007.00832.x

NG, J., KADISH, A. H., & GOLDBERGER, J. J. (2007). Technical Considerations for Dominant Frequency Analysis. Journal of Cardiovascular Electrophysiology, 18(7), 757-764. doi:10.1111/j.1540-8167.2007.00810.x

Nilsson, F., Stridh, M., Bollmann, A., & Sörnmo, L. (2006). Predicting spontaneous termination of atrial fibrillation using the surface ECG. Medical Engineering & Physics, 28(8), 802-808. doi:10.1016/j.medengphy.2005.11.010

Nollo, G., Marconcini, M., Faes, L., Bovolo, F., Ravelli, F., & Bruzzone, L. (2008). An Automatic System for the Analysis and Classification of Human Atrial Fibrillation Patterns from Intracardiac Electrograms. IEEE Transactions on Biomedical Engineering, 55(9), 2275-2285. doi:10.1109/tbme.2008.923155

Petrutiu, S., Ng, J., Nijm, G. M., Al-Angari, H., Swiryn, S., & Sahakian, A. V. (2006). Atrial fibrillation and waveform characterization. IEEE Engineering in Medicine and Biology Magazine, 25(6), 24-30. doi:10.1109/emb-m.2006.250505

Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-H2049. doi:10.1152/ajpheart.2000.278.6.h2039

Richter, U., Bollmann, A., Husser, D., & Stridh, M. (2009). Right atrial organization and wavefront analysis in atrial fibrillation. Medical & Biological Engineering & Computing, 47(12), 1237-1246. doi:10.1007/s11517-009-0540-2

Rieta, J. J., Castells, F., Sanchez, C., Zarzoso, V., & Millet, J. (2004). Atrial Activity Extraction for Atrial Fibrillation Analysis Using Blind Source Separation. IEEE Transactions on Biomedical Engineering, 51(7), 1176-1186. doi:10.1109/tbme.2004.827272

Serra, J., & Vincent, L. (1992). An overview of morphological filtering. Circuits Systems and Signal Processing, 11(1), 47-108. doi:10.1007/bf01189221

Sih, H. J., Zipes, D. P., Berbari, E. J., & Olgin, J. E. (1999). A high-temporal resolution algorithm for quantifying organization during atrial fibrillation. IEEE Transactions on Biomedical Engineering, 46(4), 440-450. doi:10.1109/10.752941

Stridh, M., & Sommo, L. (2001). Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation. IEEE Transactions on Biomedical Engineering, 48(1), 105-111. doi:10.1109/10.900266

Stridh, M., Sornmo, L., Meurling, C. J., & Olsson, S. B. (2004). Sequential Characterization of Atrial Tachyarrhythmias Based on ECG Time-Frequency Analysis. IEEE Transactions on Biomedical Engineering, 51(1), 100-114. doi:10.1109/tbme.2003.820331

Sun, P., Wu, Q. H., Weindling, A. M., Finkelstein, A., & Ibrahim, K. (2003). An improved morphological approach to background normalization of ECG signals. IEEE Transactions on Biomedical Engineering, 50(1), 117-121. doi:10.1109/tbme.2002.805486

Sun, Y., Chan, K. L., & Krishnan, S. M. (2005). Characteristic wave detection in ECG signal using morphological transform. BMC Cardiovascular Disorders, 5(1). doi:10.1186/1471-2261-5-28

SUNG, R. J., & LAUER, M. R. (2005). Atrial Fibrillation: Can We Cure It If We Can’t Explain It? Journal of Cardiovascular Electrophysiology, 16(5), 505-507. doi:10.1111/j.1540-8167.2005.50021.x

VILLANI, G. Q., NOLLO, G., RAVELLI, F., PIEPOLI, M., & CAPUCCI, A. (2002). Capture of Atrial Fibrillation Reduces the Atrial Defibrillation Threshold. Pacing and Clinical Electrophysiology, 25(8), 1159-1165. doi:10.1046/j.1460-9592.2002.01159.x

WELLS, J. L., KARP, R. B., KOUCHOUKOS, N. T., MACLEAN, W. A. H., JAMES, T. N., & WALDO, A. L. (1978). Characterization of Atrial Fibrillation in Man: Studies Following Open Heart Surgery*. Pacing and Clinical Electrophysiology, 1(4), 426-438. doi:10.1111/j.1540-8159.1978.tb03504.x

Zhang, F., & Lian, Y. (2009). QRS Detection Based on Multiscale Mathematical Morphology for Wearable ECG Devices in Body Area Networks. IEEE Transactions on Biomedical Circuits and Systems, 3(4), 220-228. doi:10.1109/tbcas.2009.2020093

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem