- -

Adjusting the parameters of the mechanical impedance for velocity, impact and force control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adjusting the parameters of the mechanical impedance for velocity, impact and force control

Mostrar el registro completo del ítem

Zotovic Stanisic, R.; Valera Fernández, Á. (2012). Adjusting the parameters of the mechanical impedance for velocity, impact and force control. Robotica. 30(4):10-25. doi:10.1017/S0263574711000725

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/46107

Ficheros en el ítem

Metadatos del ítem

Título: Adjusting the parameters of the mechanical impedance for velocity, impact and force control
Autor: Zotovic Stanisic, Ranko Valera Fernández, Ángel
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
This work is dedicated to the analysis of the application of active impedance control for the realisation of three objectives simultaneously: velocity regulation in free motion, impact attenuation and finally force tracking. ...[+]
Palabras clave: Force control , Impact , Impedance control , Robot control , Switching , Active impedance , Force tracking , Free motion , Impact control , Mechanical impedances , Optimal switching , Robot controls , Computer applications , Robotics
Derechos de uso: Reserva de todos los derechos
Fuente:
Robotica. (issn: 0263-5747 )
DOI: 10.1017/S0263574711000725
Editorial:
Cambridge University Press (CUP)
Versión del editor: http://dx.doi.org/10.1017/S0263574711000725
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2009-13830-C02-01/ES/Modelado Cinematico Y Dinamico Del Movimiento De Los Tejidos Blandos. Aplicacion Al Diseño De Modelos Biomecanicos (Desarrollo E Implementacion De Modelos)/ /
info:eu-repo/grantAgreement/MICINN//DPI2010-20814-C02-02/ES/IDENTIFICACION DE PARAMETROS DINAMICOS EN VEHICULOS LIGEROS Y ROBOTS MOVILES. APLICACION AL CONTROL Y LA NAVEGACION AUTOMATICA/
Agradecimientos:
The authors want to express their gratitude to the Plan Nacional de I+D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) for the partial financing of this work under the projects DPI2009-13830-C02-01 and ...[+]
Tipo: Artículo

References

Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics. Advanced Textbooks in Control and Signal Processing. doi:10.1007/978-1-84628-642-1

Zotovic Stanisic, R., & Valera Fernández, Á. (2009). Simultaneous velocity, impact and force control. Robotica, 27(7), 1039-1048. doi:10.1017/s0263574709005451

Seraji, H., & Colbaugh, R. (1997). Force Tracking in Impedance Control. The International Journal of Robotics Research, 16(1), 97-117. doi:10.1177/027836499701600107 [+]
Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics. Advanced Textbooks in Control and Signal Processing. doi:10.1007/978-1-84628-642-1

Zotovic Stanisic, R., & Valera Fernández, Á. (2009). Simultaneous velocity, impact and force control. Robotica, 27(7), 1039-1048. doi:10.1017/s0263574709005451

Seraji, H., & Colbaugh, R. (1997). Force Tracking in Impedance Control. The International Journal of Robotics Research, 16(1), 97-117. doi:10.1177/027836499701600107

Hogan, N. (1985). Impedance Control: An Approach to Manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control, 107(1), 1-7. doi:10.1115/1.3140702

A nonlinear PD controller for force and contact transient control. (1995). IEEE Control Systems, 15(1), 15-21. doi:10.1109/37.341859

Brogliato, B., Niculescu, S.-I., & Orhant, P. (1997). On the control of finite-dimensional mechanical systems with unilateral constraints. IEEE Transactions on Automatic Control, 42(2), 200-215. doi:10.1109/9.554400

Tsuji, T., & Tanaka, Y. (2008). Bio-mimetic impedance control of robotic manipulator for dynamic contact tasks. Robotics and Autonomous Systems, 56(4), 306-316. doi:10.1016/j.robot.2007.09.001

Impact modeling and control for industrial manipulators. (1998). IEEE Control Systems, 18(4), 65-71. doi:10.1109/37.710879

Ott, C., Albu-Schaffer, A., Kugi, A., & Hirzinger, G. (2008). On the Passivity-Based Impedance Control of Flexible Joint Robots. IEEE Transactions on Robotics, 24(2), 416-429. doi:10.1109/tro.2008.915438

Brogliato, B. (1999). Nonsmooth Mechanics. Communications and Control Engineering. doi:10.1007/978-1-4471-0557-2

Edwards, C. (1998). Sliding Mode Control. doi:10.1201/9781498701822

Armstrong, B. S. R., Gutierrez, J. A., Wade, B. A., & Joseph, R. (2006). Stability of Phase-Based Gain Modulation with Designer-Chosen Switch Functions. The International Journal of Robotics Research, 25(8), 781-796. doi:10.1177/0278364906067543

Ziren Lu, & Goldenberg, A. A. (1995). Robust Impedance Control and Force Regulation: Theory and Experiments. The International Journal of Robotics Research, 14(3), 225-254. doi:10.1177/027836499501400303

Controlling contact transition. (1994). IEEE Control Systems, 14(1), 25-30. doi:10.1109/37.257891

Armstrong, B., Neevel, D., & Kusik, T. (2001). New results in NPID control: Tracking, integral control, friction compensation and experimental results. IEEE Transactions on Control Systems Technology, 9(2), 399-406. doi:10.1109/87.911392

Volpe, R., & Khosla, P. (1993). A Theoretical and Experimental Investigation of Impact Control for Manipulators. The International Journal of Robotics Research, 12(4), 351-365. doi:10.1177/027836499301200403

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem