- -

Adjusting the parameters of the mechanical impedance for velocity, impact and force control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Adjusting the parameters of the mechanical impedance for velocity, impact and force control

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zotovic Stanisic, Ranko es_ES
dc.contributor.author Valera Fernández, Ángel es_ES
dc.date.accessioned 2015-01-15T14:15:28Z
dc.date.available 2015-01-15T14:15:28Z
dc.date.issued 2012-07
dc.identifier.issn 0263-5747
dc.identifier.uri http://hdl.handle.net/10251/46107
dc.description.abstract This work is dedicated to the analysis of the application of active impedance control for the realisation of three objectives simultaneously: velocity regulation in free motion, impact attenuation and finally force tracking. At first, a brief analysis of active impedance control is made, deducing the value of each parameter in order to achieve the three objectives. It is demonstrated that the system may be made overdamped with the adequate selection of the parameters if the characteristics of the environment are known, avoiding high overshoots of force during the impact. The second and most important contribution of this work is an additional measure for impact control in the case when the characteristics of the environment are unknown. It consists in switching among different values of the parameters of the impedance in order to dissipate faster the energy of the system, limiting the peaks of force and avoiding losses of contact. The optimal switching criteria are deduced for every parameter in order to dissipate the energy of the system as fast as possible. The results are verified in simulation. © 2011 Cambridge University Press. es_ES
dc.description.sponsorship The authors want to express their gratitude to the Plan Nacional de I+D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) for the partial financing of this work under the projects DPI2009-13830-C02-01 and DPI2010-20814-C02-02. en_EN
dc.language Inglés es_ES
dc.publisher Cambridge University Press (CUP) es_ES
dc.relation.ispartof Robotica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Force control es_ES
dc.subject Impact es_ES
dc.subject Impedance control es_ES
dc.subject Robot control es_ES
dc.subject Switching es_ES
dc.subject Active impedance es_ES
dc.subject Force tracking es_ES
dc.subject Free motion es_ES
dc.subject Impact control es_ES
dc.subject Mechanical impedances es_ES
dc.subject Optimal switching es_ES
dc.subject Robot controls es_ES
dc.subject Computer applications es_ES
dc.subject Robotics es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Adjusting the parameters of the mechanical impedance for velocity, impact and force control es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/S0263574711000725
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2009-13830-C02-01/ES/Modelado Cinematico Y Dinamico Del Movimiento De Los Tejidos Blandos. Aplicacion Al Diseño De Modelos Biomecanicos (Desarrollo E Implementacion De Modelos)/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20814-C02-02/ES/IDENTIFICACION DE PARAMETROS DINAMICOS EN VEHICULOS LIGEROS Y ROBOTS MOVILES. APLICACION AL CONTROL Y LA NAVEGACION AUTOMATICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Zotovic Stanisic, R.; Valera Fernández, Á. (2012). Adjusting the parameters of the mechanical impedance for velocity, impact and force control. Robotica. 30(4):10-25. doi:10.1017/S0263574711000725 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1017/S0263574711000725 es_ES
dc.description.upvformatpinicio 10 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 206433
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2009). Robotics. Advanced Textbooks in Control and Signal Processing. doi:10.1007/978-1-84628-642-1 es_ES
dc.description.references Zotovic Stanisic, R., & Valera Fernández, Á. (2009). Simultaneous velocity, impact and force control. Robotica, 27(7), 1039-1048. doi:10.1017/s0263574709005451 es_ES
dc.description.references Seraji, H., & Colbaugh, R. (1997). Force Tracking in Impedance Control. The International Journal of Robotics Research, 16(1), 97-117. doi:10.1177/027836499701600107 es_ES
dc.description.references Hogan, N. (1985). Impedance Control: An Approach to Manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control, 107(1), 1-7. doi:10.1115/1.3140702 es_ES
dc.description.references A nonlinear PD controller for force and contact transient control. (1995). IEEE Control Systems, 15(1), 15-21. doi:10.1109/37.341859 es_ES
dc.description.references Brogliato, B., Niculescu, S.-I., & Orhant, P. (1997). On the control of finite-dimensional mechanical systems with unilateral constraints. IEEE Transactions on Automatic Control, 42(2), 200-215. doi:10.1109/9.554400 es_ES
dc.description.references Tsuji, T., & Tanaka, Y. (2008). Bio-mimetic impedance control of robotic manipulator for dynamic contact tasks. Robotics and Autonomous Systems, 56(4), 306-316. doi:10.1016/j.robot.2007.09.001 es_ES
dc.description.references Impact modeling and control for industrial manipulators. (1998). IEEE Control Systems, 18(4), 65-71. doi:10.1109/37.710879 es_ES
dc.description.references Ott, C., Albu-Schaffer, A., Kugi, A., & Hirzinger, G. (2008). On the Passivity-Based Impedance Control of Flexible Joint Robots. IEEE Transactions on Robotics, 24(2), 416-429. doi:10.1109/tro.2008.915438 es_ES
dc.description.references Brogliato, B. (1999). Nonsmooth Mechanics. Communications and Control Engineering. doi:10.1007/978-1-4471-0557-2 es_ES
dc.description.references Edwards, C. (1998). Sliding Mode Control. doi:10.1201/9781498701822 es_ES
dc.description.references Armstrong, B. S. R., Gutierrez, J. A., Wade, B. A., & Joseph, R. (2006). Stability of Phase-Based Gain Modulation with Designer-Chosen Switch Functions. The International Journal of Robotics Research, 25(8), 781-796. doi:10.1177/0278364906067543 es_ES
dc.description.references Ziren Lu, & Goldenberg, A. A. (1995). Robust Impedance Control and Force Regulation: Theory and Experiments. The International Journal of Robotics Research, 14(3), 225-254. doi:10.1177/027836499501400303 es_ES
dc.description.references Controlling contact transition. (1994). IEEE Control Systems, 14(1), 25-30. doi:10.1109/37.257891 es_ES
dc.description.references Armstrong, B., Neevel, D., & Kusik, T. (2001). New results in NPID control: Tracking, integral control, friction compensation and experimental results. IEEE Transactions on Control Systems Technology, 9(2), 399-406. doi:10.1109/87.911392 es_ES
dc.description.references Volpe, R., & Khosla, P. (1993). A Theoretical and Experimental Investigation of Impact Control for Manipulators. The International Journal of Robotics Research, 12(4), 351-365. doi:10.1177/027836499301200403 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem