Mostrar el registro sencillo del ítem
dc.contributor.author | Zhou ., Haiyan | es_ES |
dc.contributor.author | Gómez-Hernández, J. Jaime | es_ES |
dc.contributor.author | Li ., Liangping | es_ES |
dc.date.accessioned | 2015-02-12T12:20:21Z | |
dc.date.available | 2015-02-12T12:20:21Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0043-1397 | |
dc.identifier.uri | http://hdl.handle.net/10251/46948 | |
dc.description.abstract | Uncertainty in model predictions is caused to a large extent by the uncertainty in model parameters, while the identification of model parameters is demanding because of the inherent heterogeneity of the aquifer. A variety of inverse methods has been proposed for parameter identification. In this paper we present a novel inverse method to constrain the model parameters (hydraulic conductivities) to the observed state data (hydraulic heads). In the method proposed we build a conditioning pattern consisting of simulated model parameters and observed flow data. The unknown parameter values are simulated by pattern searching through an ensemble of realizations rather than optimizing an objective function. The model parameters do not necessarily follow a multi-Gaussian distribution, and the nonlinear relationship between the parameter and the response is captured by the multipoint pattern matching. The algorithm is evaluated in two synthetic bimodal aquifers. The proposed method is able to reproduce the main structure of the reference fields, and the performance of the updated model in predicting flow and transport is improved compared with that of the prior model. | es_ES |
dc.description.sponsorship | The authors gratefully acknowledge the financial support from the Ministry of Science and Innovation, project CGL2011-23295. The first author also acknowledges the scholarship provided by the China Scholarship Council (CSC [2007] 3020). The authors would like to thank Gregoire Mariethoz (University of New South Wales) and Philippe Renard (University of Neuchatel) for their enthusiastic help in answering questions about the direct sampling algorithm. Gregoire Mariethoz and two anonymous reviewers are also thanked for their comments during the reviewing process, which helped improving the final paper. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Geophysical Union (AGU) | es_ES |
dc.relation.ispartof | Water Resources Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Flow and transport | es_ES |
dc.subject | Flow data | es_ES |
dc.subject | Hydraulic heads | es_ES |
dc.subject | Identification of model | es_ES |
dc.subject | Inverse methods | es_ES |
dc.subject | Main structure | es_ES |
dc.subject | Model parameters | es_ES |
dc.subject | Model prediction | es_ES |
dc.subject | Multipoint | es_ES |
dc.subject | Non-linear relationships | es_ES |
dc.subject | Objective functions | es_ES |
dc.subject | Reference field | es_ES |
dc.subject | Simulated model | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | A pattern-search-based inverse method | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1029/2011WR011195 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2011-23295/ES/MODELACION ESTOCASTICA INVERSA FUERA DE LO NORMAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CSC//[2007]3020/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Zhou ., H.; Gómez-Hernández, JJ.; Li ., L. (2012). A pattern-search-based inverse method. Water Resources Research. 48(3):1-17. https://doi.org/10.1029/2011WR011195 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1029/2011WR011195 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 48 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 233949 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | China Scholarship Council | es_ES |
dc.description.references | Alcolea, A., & Renard, P. (2010). Blocking Moving Window algorithm: Conditioning multiple-point simulations to hydrogeological data. Water Resources Research, 46(8). doi:10.1029/2009wr007943 | es_ES |
dc.description.references | Alcolea, A., Carrera, J., & Medina, A. (2006). Pilot points method incorporating prior information for solving the groundwater flow inverse problem. Advances in Water Resources, 29(11), 1678-1689. doi:10.1016/j.advwatres.2005.12.009 | es_ES |
dc.description.references | Arpat, G. B., & Caers, J. (2007). Conditional Simulation with Patterns. Mathematical Geology, 39(2), 177-203. doi:10.1007/s11004-006-9075-3 | es_ES |
dc.description.references | Caers , J. 2002 Geostatistical history matching under training-image based geological model constraints | es_ES |
dc.description.references | Caers, J. (2003). Efficient gradual deformation using a streamline-based proxy method. Journal of Petroleum Science and Engineering, 39(1-2), 57-83. doi:10.1016/s0920-4105(03)00040-8 | es_ES |
dc.description.references | Caers, J., & Hoffman, T. (2006). The Probability Perturbation Method: A New Look at Bayesian Inverse Modeling. Mathematical Geology, 38(1), 81-100. doi:10.1007/s11004-005-9005-9 | es_ES |
dc.description.references | Capilla, J. E., & Llopis-Albert, C. (2009). Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory. Journal of Hydrology, 371(1-4), 66-74. doi:10.1016/j.jhydrol.2009.03.015 | es_ES |
dc.description.references | Carrera, J., & Neuman, S. P. (1986). Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information. Water Resources Research, 22(2), 199-210. doi:10.1029/wr022i002p00199 | es_ES |
dc.description.references | Chen, Y., & Zhang, D. (2006). Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Advances in Water Resources, 29(8), 1107-1122. doi:10.1016/j.advwatres.2005.09.007 | es_ES |
dc.description.references | Christiansen, L., Binning, P. J., Rosbjerg, D., Andersen, O. B., & Bauer-Gottwein, P. (2011). Using time-lapse gravity for groundwater model calibration: An application to alluvial aquifer storage. Water Resources Research, 47(6). doi:10.1029/2010wr009859 | es_ES |
dc.description.references | De Marsily, G., Delay, F., Gonçalvès, J., Renard, P., Teles, V., & Violette, S. (2005). Dealing with spatial heterogeneity. Hydrogeology Journal, 13(1), 161-183. doi:10.1007/s10040-004-0432-3 | es_ES |
dc.description.references | Deutsch, C. V., & Tran, T. T. (2002). FLUVSIM: a program for object-based stochastic modeling of fluvial depositional systems. Computers & Geosciences, 28(4), 525-535. doi:10.1016/s0098-3004(01)00075-9 | es_ES |
dc.description.references | Dubuisson, M.-P., & Jain, A. K. (s. f.). A modified Hausdorff distance for object matching. Proceedings of 12th International Conference on Pattern Recognition. doi:10.1109/icpr.1994.576361 | es_ES |
dc.description.references | Emsellem, Y., & De Marsily, G. (1971). An Automatic Solution for the Inverse Problem. Water Resources Research, 7(5), 1264-1283. doi:10.1029/wr007i005p01264 | es_ES |
dc.description.references | Evensen, G. (2003). The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53(4), 343-367. doi:10.1007/s10236-003-0036-9 | es_ES |
dc.description.references | Falivene, O., Cabello, P., Arbués, P., Muñoz, J. A., & Cabrera, L. (2009). A geostatistical algorithm to reproduce lateral gradual facies transitions: Description and implementation. Computers & Geosciences, 35(8), 1642-1651. doi:10.1016/j.cageo.2008.12.003 | es_ES |
dc.description.references | Fernàndez-Garcia, D., Illangasekare, T. H., & Rajaram, H. (2005). Differences in the scale dependence of dispersivity and retardation factors estimated from forced-gradient and uniform flow tracer tests in three-dimensional physically and chemically heterogeneous porous media. Water Resources Research, 41(3). doi:10.1029/2004wr003125 | es_ES |
dc.description.references | Feyen, L., & Caers, J. (2006). Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations. Advances in Water Resources, 29(6), 912-929. doi:10.1016/j.advwatres.2005.08.002 | es_ES |
dc.description.references | Fu, J., & Gómez-Hernández, J. J. (2008). A Blocking Markov Chain Monte Carlo Method for Inverse Stochastic Hydrogeological Modeling. Mathematical Geosciences, 41(2), 105-128. doi:10.1007/s11004-008-9206-0 | es_ES |
dc.description.references | Jaime Gómez-Hernánez, J., Sahuquillo, A., & Capilla, J. (1997). Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—I. Theory. Journal of Hydrology, 203(1-4), 162-174. doi:10.1016/s0022-1694(97)00098-x | es_ES |
dc.description.references | Guardiano, F. B., & Srivastava, R. M. (1993). Multivariate Geostatistics: Beyond Bivariate Moments. Geostatistics Tróia ’92, 133-144. doi:10.1007/978-94-011-1739-5_12 | es_ES |
dc.description.references | Harbaugh , A. W. E. R. Banta M. C. Hill M. G. McDonald 2000 MODFLOW-2000, the U.S. Geological Survey modular ground-water model-User guide to modularization concepts and the ground-water flow process Reston, Va. | es_ES |
dc.description.references | Hendricks Franssen, H. J., & Kinzelbach, W. (2008). Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research, 44(9). doi:10.1029/2007wr006505 | es_ES |
dc.description.references | Franssen, H.-J. H., Gómez-Hernández, J., & Sahuquillo, A. (2003). Coupled inverse modelling of groundwater flow and mass transport and the worth of concentration data. Journal of Hydrology, 281(4), 281-295. doi:10.1016/s0022-1694(03)00191-4 | es_ES |
dc.description.references | Henrion, V., Caumon, G., & Cherpeau, N. (2010). ODSIM: An Object-Distance Simulation Method for Conditioning Complex Natural Structures. Mathematical Geosciences, 42(8), 911-924. doi:10.1007/s11004-010-9299-0 | es_ES |
dc.description.references | Hoeksema, R. J., & Kitanidis, P. K. (1984). An Application of the Geostatistical Approach to the Inverse Problem in Two-Dimensional Groundwater Modeling. Water Resources Research, 20(7), 1003-1020. doi:10.1029/wr020i007p01003 | es_ES |
dc.description.references | Hoeksema, R. J., & Kitanidis, P. K. (1985). Analysis of the Spatial Structure of Properties of Selected Aquifers. Water Resources Research, 21(4), 563-572. doi:10.1029/wr021i004p00563 | es_ES |
dc.description.references | Hu, L. Y. (2000). Mathematical Geology, 32(1), 87-108. doi:10.1023/a:1007506918588 | es_ES |
dc.description.references | Hu, L. Y., & Chugunova, T. (2008). Multiple-point geostatistics for modeling subsurface heterogeneity: A comprehensive review. Water Resources Research, 44(11). doi:10.1029/2008wr006993 | es_ES |
dc.description.references | Huysmans, M., & Dassargues, A. (2009). Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium). Hydrogeology Journal, 17(8), 1901-1911. doi:10.1007/s10040-009-0495-2 | es_ES |
dc.description.references | Jafarpour, B., & Khodabakhshi, M. (2011). A Probability Conditioning Method (PCM) for Nonlinear Flow Data Integration into Multipoint Statistical Facies Simulation. Mathematical Geosciences, 43(2), 133-164. doi:10.1007/s11004-011-9316-y | es_ES |
dc.description.references | Journel, A., & Zhang, T. (2006). The Necessity of a Multiple-Point Prior Model. Mathematical Geology, 38(5), 591-610. doi:10.1007/s11004-006-9031-2 | es_ES |
dc.description.references | Kerrou, J., Renard, P., Hendricks Franssen, H.-J., & Lunati, I. (2008). Issues in characterizing heterogeneity and connectivity in non-multiGaussian media. Advances in Water Resources, 31(1), 147-159. doi:10.1016/j.advwatres.2007.07.002 | es_ES |
dc.description.references | Kwa, Franz, M. O., & Scholkopf, B. (2005). Iterative kernel principal component analysis for image modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9), 1351-1366. doi:10.1109/tpami.2005.181 | es_ES |
dc.description.references | Kitanidis, P. K. (2007). On stochastic inverse modeling. Geophysical Monograph Series, 19-30. doi:10.1029/171gm04 | es_ES |
dc.description.references | Kitanidis, P. K., & Vomvoris, E. G. (1983). A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations. Water Resources Research, 19(3), 677-690. doi:10.1029/wr019i003p00677 | es_ES |
dc.description.references | Li, L., Zhou, H., Hendricks Franssen, H. J., & Gómez-Hernández, J. J. (2011). Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter. Hydrology and Earth System Sciences Discussions, 8(4), 6749-6788. doi:10.5194/hessd-8-6749-2011 | es_ES |
dc.description.references | Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Advances in Water Resources, 34(4), 478-489. doi:10.1016/j.advwatres.2011.01.001 | es_ES |
dc.description.references | Li, L., Zhou, H., & Gómez-Hernández, J. J. (2011). A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). Journal of Hydrology, 404(3-4), 278-293. doi:10.1016/j.jhydrol.2011.05.001 | es_ES |
dc.description.references | Mariethoz, G., Renard, P., & Straubhaar, J. (2010). The Direct Sampling method to perform multiple-point geostatistical simulations. Water Resources Research, 46(11). doi:10.1029/2008wr007621 | es_ES |
dc.description.references | Mariethoz, G., Renard, P., & Caers, J. (2010). Bayesian inverse problem and optimization with iterative spatial resampling. Water Resources Research, 46(11). doi:10.1029/2010wr009274 | es_ES |
dc.description.references | Neuman, S. P. (1973). Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision process under uncertainty. Water Resources Research, 9(4), 1006-1021. doi:10.1029/wr009i004p01006 | es_ES |
dc.description.references | Oliver, D. S., Cunha, L. B., & Reynolds, A. C. (1997). Markov chain Monte Carlo methods for conditioning a permeability field to pressure data. Mathematical Geology, 29(1), 61-91. doi:10.1007/bf02769620 | es_ES |
dc.description.references | RamaRao, B. S., LaVenue, A. M., De Marsily, G., & Marietta, M. G. (1995). Pilot Point Methodology for Automated Calibration of an Ensemble of conditionally Simulated Transmissivity Fields: 1. Theory and Computational Experiments. Water Resources Research, 31(3), 475-493. doi:10.1029/94wr02258 | es_ES |
dc.description.references | Rubin, Y., Chen, X., Murakami, H., & Hahn, M. (2010). A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields. Water Resources Research, 46(10). doi:10.1029/2009wr008799 | es_ES |
dc.description.references | Strebelle, S. (2002). Mathematical Geology, 34(1), 1-21. doi:10.1023/a:1014009426274 | es_ES |
dc.description.references | Suzuki, S., & Caers, J. (2008). A Distance-based Prior Model Parameterization for Constraining Solutions of Spatial Inverse Problems. Mathematical Geosciences, 40(4), 445-469. doi:10.1007/s11004-008-9154-8 | es_ES |
dc.description.references | Wen, X. H., Capilla, J. E., Deutsch, C. V., Gómez-Hernández, J. J., & Cullick, A. S. (1999). A program to create permeability fields that honor single-phase flow rate and pressure data. Computers & Geosciences, 25(3), 217-230. doi:10.1016/s0098-3004(98)00126-5 | es_ES |
dc.description.references | Zhang, T., Switzer, P., & Journel, A. (2006). Filter-Based Classification of Training Image Patterns for Spatial Simulation. Mathematical Geology, 38(1), 63-80. doi:10.1007/s11004-005-9004-x | es_ES |
dc.description.references | Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., & Li, L. (2011). An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Advances in Water Resources, 34(7), 844-864. doi:10.1016/j.advwatres.2011.04.014 | es_ES |
dc.description.references | Zhou, H., Li, L., Hendricks Franssen, H.-J., & Gómez-Hernández, J. J. (2011). Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter. Mathematical Geosciences, 44(2), 169-185. doi:10.1007/s11004-011-9372-3 | es_ES |