- -

Identification of Active Surface Species for Friedel Crafts Acylation and Koch Carbonylation Reactions by in situ Solid-State NMR Spectroscopy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of Active Surface Species for Friedel Crafts Acylation and Koch Carbonylation Reactions by in situ Solid-State NMR Spectroscopy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lezcano González, Inés es_ES
dc.contributor.author Vidal Moya, José Alejandro es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Blasco Lanzuela, Teresa es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2015-02-17T11:10:49Z
dc.date.issued 2013-05-03
dc.identifier.issn 1433-7851
dc.identifier.uri http://hdl.handle.net/10251/47186
dc.description.abstract Finding the culprits: In situ NMR spectroscopy combined with theoretical calculations show the formation of acetyl species covalently bound to framework oxygen atoms in acid zeolites. These species, and not the usually assumed acylium cations, are the reactive intermediates in Friedel–Crafts acylation and Koch carbonylation reactions on zeolites. es_ES
dc.description.sponsorship The authors acknowledge Spanish MINECO (Projects MAT-2012-38567-C02-01, CTQ-2012-37925-C03-01 and Consolider Ingenio 2010-MULTICAT, CSD2009-00050). en_EN
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Angewandte Chemie International Edition es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Acid catalysts es_ES
dc.subject Density functional theory; es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject NMR spectroscopy es_ES
dc.subject Zeolites es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Identification of Active Surface Species for Friedel Crafts Acylation and Koch Carbonylation Reactions by in situ Solid-State NMR Spectroscopy es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/anie.201209907
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38567-C02-01/ES/MATERIALES ZEOLITICOS COMO ESTRUCTURAS ANFITRIONAS DE NANOPARTICULAS. SINTESIS Y APLICACIONES NANOTECNOLOGICAS, CATALITICAS Y MEDIOAMBIENTALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-37925-C03-01/ES/CATALIZADORES PARA LA ENERGIA Y EL MEDIOAMBIENTE: ACTIVACION SELECTIVA DE ENLACES S-H Y C-H/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Lezcano González, I.; Vidal Moya, JA.; Boronat Zaragoza, M.; Blasco Lanzuela, T.; Corma Canós, A. (2013). Identification of Active Surface Species for Friedel Crafts Acylation and Koch Carbonylation Reactions by in situ Solid-State NMR Spectroscopy. Angewandte Chemie International Edition. 52(19):5138-5141. doi:10.1002/anie.201209907 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/anie.201209907 es_ES
dc.description.upvformatpinicio 5138 es_ES
dc.description.upvformatpfin 5141 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 19 es_ES
dc.relation.senia 257707
dc.identifier.eissn 1521-3773
dc.description.references Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006 es_ES
dc.description.references Sartori, G., & Maggi, R. (2006). Use of Solid Catalysts in Friedel−Crafts Acylation Reactions†. Chemical Reviews, 106(3), 1077-1104. doi:10.1021/cr040695c es_ES
dc.description.references Corma, A., JoséCliment, M., García, H., & Primo, J. (1989). Design of synthetic zeolites as catalysts in organic reactions. Applied Catalysis, 49(1), 109-123. doi:10.1016/s0166-9834(00)81427-x es_ES
dc.description.references Xu, T., Torres, P. D., Beck, L. W., & Haw, J. F. (1995). Preparation and NMR Characterization of Carbenium Ions on Metal Halide Powders. Journal of the American Chemical Society, 117(30), 8027-8028. doi:10.1021/ja00135a026 es_ES
dc.description.references Bosáček, V., Gunnewegh, E. A., & van Bekkum, H. (1996). Surface complexes in zeolite-catalysed acylation reactions detected by13C MAS NMR spectroscopy. Catalysis Letters, 39(1-2), 57-62. doi:10.1007/bf00813730 es_ES
dc.description.references Luzgin, M. V., Romannikov, V. N., Stepanov, A. G., & Zamaraev, K. I. (1996). Interaction of Olefins with Carbon Monoxide on Zeolite H-ZSM-5. NMR Observation of the Friedel−Crafts Acylation of Alkenes at Ambient Temperature. Journal of the American Chemical Society, 118(44), 10890-10891. doi:10.1021/ja9615381 es_ES
dc.description.references Jiang, Y., Hunger, M., & Wang, W. (2006). On the Reactivity of Surface Methoxy Species in Acidic Zeolites. Journal of the American Chemical Society, 128(35), 11679-11692. doi:10.1021/ja061018y es_ES
dc.description.references Wang, W., & Hunger, M. (2008). Reactivity of Surface Alkoxy Species on Acidic Zeolite Catalysts. Accounts of Chemical Research, 41(8), 895-904. doi:10.1021/ar700210f es_ES
dc.description.references Cheung, P., Bhan, A., Sunley, G. J., & Iglesia, E. (2006). Selective Carbonylation of Dimethyl Ether to Methyl Acetate Catalyzed by Acidic Zeolites. Angewandte Chemie, 118(10), 1647-1650. doi:10.1002/ange.200503898 es_ES
dc.description.references Cheung, P., Bhan, A., Sunley, G. J., & Iglesia, E. (2006). Selective Carbonylation of Dimethyl Ether to Methyl Acetate Catalyzed by Acidic Zeolites. Angewandte Chemie International Edition, 45(10), 1617-1620. doi:10.1002/anie.200503898 es_ES
dc.description.references CHEUNG, P., BHAN, A., SUNLEY, G., LAW, D., & IGLESIA, E. (2007). Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites. Journal of Catalysis, 245(1), 110-123. doi:10.1016/j.jcat.2006.09.020 es_ES
dc.description.references Blasco, T., Boronat, M., Concepción, P., Corma, A., Law, D., & Vidal-Moya, J. A. (2007). Carbonylation of Methanol on Metal–Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center. Angewandte Chemie, 119(21), 4012-4015. doi:10.1002/ange.200700029 es_ES
dc.description.references Blasco, T., Boronat, M., Concepción, P., Corma, A., Law, D., & Vidal-Moya, J. A. (2007). Carbonylation of Methanol on Metal–Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center. Angewandte Chemie International Edition, 46(21), 3938-3941. doi:10.1002/anie.200700029 es_ES
dc.description.references Bhan, A., & Iglesia, E. (2008). A Link between Reactivity and Local Structure in Acid Catalysis on Zeolites. Accounts of Chemical Research, 41(4), 559-567. doi:10.1021/ar700181t es_ES
dc.description.references Stepanov, A. G., Luzgin, M. V., Romannikov, V. N., & Zamaraev, K. I. (1995). NMR Observation of the Koch Reaction in Zeolite H-ZSM-5 under Mild Conditions. Journal of the American Chemical Society, 117(12), 3615-3616. doi:10.1021/ja00117a032 es_ES
dc.description.references Blasco, T. (2010). Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chemical Society Reviews, 39(12), 4685. doi:10.1039/c0cs00033g es_ES
dc.description.references Luzgin, M. V., Kazantsev, M. S., Wang, W., & Stepanov, A. G. (2009). Reactivity of Methoxy Species toward CO on Keggin 12-H3PW12O40: A Study with Solid State NMR. The Journal of Physical Chemistry C, 113(45), 19639-19644. doi:10.1021/jp906888m es_ES
dc.description.references Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m es_ES
dc.description.references Boronat, M., Martínez, C., & Corma, A. (2011). Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite. Physical Chemistry Chemical Physics, 13(7), 2603. doi:10.1039/c0cp01996h es_ES
dc.description.references Wang, X., Qi, G., Xu, J., Li, B., Wang, C., & Deng, F. (2012). NMR-Spectroscopic Evidence of Intermediate-Dependent Pathways for Acetic Acid Formation from Methane and Carbon Monoxide over a ZnZSM-5 Zeolite Catalyst. Angewandte Chemie, 124(16), 3916-3919. doi:10.1002/ange.201108634 es_ES
dc.description.references Wang, X., Qi, G., Xu, J., Li, B., Wang, C., & Deng, F. (2012). NMR-Spectroscopic Evidence of Intermediate-Dependent Pathways for Acetic Acid Formation from Methane and Carbon Monoxide over a ZnZSM-5 Zeolite Catalyst. Angewandte Chemie International Edition, 51(16), 3850-3853. doi:10.1002/anie.201108634 es_ES
dc.description.references Derouane, E. G., Dillon, C. J., Bethell, D., & Derouane-Abd Hamid, S. B. (1999). Zeolite Catalysts as Solid Solvents in Fine Chemicals Synthesis. Journal of Catalysis, 187(1), 209-218. doi:10.1006/jcat.1999.2575 es_ES
dc.description.references Fernández, A. B., Boronat, M., Blasco, T., & Corma, A. (2005). Establishing a Molecular Mechanism for the Beckmann Rearrangement of Oximes over Microporous Molecular Sieves. Angewandte Chemie, 117(16), 2422-2425. doi:10.1002/ange.200462737 es_ES
dc.description.references Fernández, A. B., Boronat, M., Blasco, T., & Corma, A. (2005). Establishing a Molecular Mechanism for the Beckmann Rearrangement of Oximes over Microporous Molecular Sieves. Angewandte Chemie International Edition, 44(16), 2370-2373. doi:10.1002/anie.200462737 es_ES
dc.description.references Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 es_ES
dc.description.references Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244 es_ES
dc.description.references Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 28(3), 213-222. doi:10.1007/bf00533485 es_ES
dc.description.references Ditchfield, R. (1974). Self-consistent perturbation theory of diamagnetism. Molecular Physics, 27(4), 789-807. doi:10.1080/00268977400100711 es_ES
dc.description.references Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251-8260. doi:10.1021/ja00179a005 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem