Mostrar el registro sencillo del ítem
dc.contributor.author | Lezcano González, Inés | es_ES |
dc.contributor.author | Vidal Moya, José Alejandro | es_ES |
dc.contributor.author | Boronat Zaragoza, Mercedes | es_ES |
dc.contributor.author | Blasco Lanzuela, Teresa | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2015-02-17T11:10:49Z | |
dc.date.issued | 2013-05-03 | |
dc.identifier.issn | 1433-7851 | |
dc.identifier.uri | http://hdl.handle.net/10251/47186 | |
dc.description.abstract | Finding the culprits: In situ NMR spectroscopy combined with theoretical calculations show the formation of acetyl species covalently bound to framework oxygen atoms in acid zeolites. These species, and not the usually assumed acylium cations, are the reactive intermediates in Friedel–Crafts acylation and Koch carbonylation reactions on zeolites. | es_ES |
dc.description.sponsorship | The authors acknowledge Spanish MINECO (Projects MAT-2012-38567-C02-01, CTQ-2012-37925-C03-01 and Consolider Ingenio 2010-MULTICAT, CSD2009-00050). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Angewandte Chemie International Edition | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Acid catalysts | es_ES |
dc.subject | Density functional theory; | es_ES |
dc.subject | Heterogeneous catalysis | es_ES |
dc.subject | NMR spectroscopy | es_ES |
dc.subject | Zeolites | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Identification of Active Surface Species for Friedel Crafts Acylation and Koch Carbonylation Reactions by in situ Solid-State NMR Spectroscopy | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/anie.201209907 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-38567-C02-01/ES/MATERIALES ZEOLITICOS COMO ESTRUCTURAS ANFITRIONAS DE NANOPARTICULAS. SINTESIS Y APLICACIONES NANOTECNOLOGICAS, CATALITICAS Y MEDIOAMBIENTALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-37925-C03-01/ES/CATALIZADORES PARA LA ENERGIA Y EL MEDIOAMBIENTE: ACTIVACION SELECTIVA DE ENLACES S-H Y C-H/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Lezcano González, I.; Vidal Moya, JA.; Boronat Zaragoza, M.; Blasco Lanzuela, T.; Corma Canós, A. (2013). Identification of Active Surface Species for Friedel Crafts Acylation and Koch Carbonylation Reactions by in situ Solid-State NMR Spectroscopy. Angewandte Chemie International Edition. 52(19):5138-5141. doi:10.1002/anie.201209907 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/anie.201209907 | es_ES |
dc.description.upvformatpinicio | 5138 | es_ES |
dc.description.upvformatpfin | 5141 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 52 | es_ES |
dc.description.issue | 19 | es_ES |
dc.relation.senia | 257707 | |
dc.identifier.eissn | 1521-3773 | |
dc.description.references | Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006 | es_ES |
dc.description.references | Sartori, G., & Maggi, R. (2006). Use of Solid Catalysts in Friedel−Crafts Acylation Reactions†. Chemical Reviews, 106(3), 1077-1104. doi:10.1021/cr040695c | es_ES |
dc.description.references | Corma, A., JoséCliment, M., García, H., & Primo, J. (1989). Design of synthetic zeolites as catalysts in organic reactions. Applied Catalysis, 49(1), 109-123. doi:10.1016/s0166-9834(00)81427-x | es_ES |
dc.description.references | Xu, T., Torres, P. D., Beck, L. W., & Haw, J. F. (1995). Preparation and NMR Characterization of Carbenium Ions on Metal Halide Powders. Journal of the American Chemical Society, 117(30), 8027-8028. doi:10.1021/ja00135a026 | es_ES |
dc.description.references | Bosáček, V., Gunnewegh, E. A., & van Bekkum, H. (1996). Surface complexes in zeolite-catalysed acylation reactions detected by13C MAS NMR spectroscopy. Catalysis Letters, 39(1-2), 57-62. doi:10.1007/bf00813730 | es_ES |
dc.description.references | Luzgin, M. V., Romannikov, V. N., Stepanov, A. G., & Zamaraev, K. I. (1996). Interaction of Olefins with Carbon Monoxide on Zeolite H-ZSM-5. NMR Observation of the Friedel−Crafts Acylation of Alkenes at Ambient Temperature. Journal of the American Chemical Society, 118(44), 10890-10891. doi:10.1021/ja9615381 | es_ES |
dc.description.references | Jiang, Y., Hunger, M., & Wang, W. (2006). On the Reactivity of Surface Methoxy Species in Acidic Zeolites. Journal of the American Chemical Society, 128(35), 11679-11692. doi:10.1021/ja061018y | es_ES |
dc.description.references | Wang, W., & Hunger, M. (2008). Reactivity of Surface Alkoxy Species on Acidic Zeolite Catalysts. Accounts of Chemical Research, 41(8), 895-904. doi:10.1021/ar700210f | es_ES |
dc.description.references | Cheung, P., Bhan, A., Sunley, G. J., & Iglesia, E. (2006). Selective Carbonylation of Dimethyl Ether to Methyl Acetate Catalyzed by Acidic Zeolites. Angewandte Chemie, 118(10), 1647-1650. doi:10.1002/ange.200503898 | es_ES |
dc.description.references | Cheung, P., Bhan, A., Sunley, G. J., & Iglesia, E. (2006). Selective Carbonylation of Dimethyl Ether to Methyl Acetate Catalyzed by Acidic Zeolites. Angewandte Chemie International Edition, 45(10), 1617-1620. doi:10.1002/anie.200503898 | es_ES |
dc.description.references | CHEUNG, P., BHAN, A., SUNLEY, G., LAW, D., & IGLESIA, E. (2007). Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites. Journal of Catalysis, 245(1), 110-123. doi:10.1016/j.jcat.2006.09.020 | es_ES |
dc.description.references | Blasco, T., Boronat, M., Concepción, P., Corma, A., Law, D., & Vidal-Moya, J. A. (2007). Carbonylation of Methanol on Metal–Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center. Angewandte Chemie, 119(21), 4012-4015. doi:10.1002/ange.200700029 | es_ES |
dc.description.references | Blasco, T., Boronat, M., Concepción, P., Corma, A., Law, D., & Vidal-Moya, J. A. (2007). Carbonylation of Methanol on Metal–Acid Zeolites: Evidence for a Mechanism Involving a Multisite Active Center. Angewandte Chemie International Edition, 46(21), 3938-3941. doi:10.1002/anie.200700029 | es_ES |
dc.description.references | Bhan, A., & Iglesia, E. (2008). A Link between Reactivity and Local Structure in Acid Catalysis on Zeolites. Accounts of Chemical Research, 41(4), 559-567. doi:10.1021/ar700181t | es_ES |
dc.description.references | Stepanov, A. G., Luzgin, M. V., Romannikov, V. N., & Zamaraev, K. I. (1995). NMR Observation of the Koch Reaction in Zeolite H-ZSM-5 under Mild Conditions. Journal of the American Chemical Society, 117(12), 3615-3616. doi:10.1021/ja00117a032 | es_ES |
dc.description.references | Blasco, T. (2010). Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chemical Society Reviews, 39(12), 4685. doi:10.1039/c0cs00033g | es_ES |
dc.description.references | Luzgin, M. V., Kazantsev, M. S., Wang, W., & Stepanov, A. G. (2009). Reactivity of Methoxy Species toward CO on Keggin 12-H3PW12O40: A Study with Solid State NMR. The Journal of Physical Chemistry C, 113(45), 19639-19644. doi:10.1021/jp906888m | es_ES |
dc.description.references | Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m | es_ES |
dc.description.references | Boronat, M., Martínez, C., & Corma, A. (2011). Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite. Physical Chemistry Chemical Physics, 13(7), 2603. doi:10.1039/c0cp01996h | es_ES |
dc.description.references | Wang, X., Qi, G., Xu, J., Li, B., Wang, C., & Deng, F. (2012). NMR-Spectroscopic Evidence of Intermediate-Dependent Pathways for Acetic Acid Formation from Methane and Carbon Monoxide over a ZnZSM-5 Zeolite Catalyst. Angewandte Chemie, 124(16), 3916-3919. doi:10.1002/ange.201108634 | es_ES |
dc.description.references | Wang, X., Qi, G., Xu, J., Li, B., Wang, C., & Deng, F. (2012). NMR-Spectroscopic Evidence of Intermediate-Dependent Pathways for Acetic Acid Formation from Methane and Carbon Monoxide over a ZnZSM-5 Zeolite Catalyst. Angewandte Chemie International Edition, 51(16), 3850-3853. doi:10.1002/anie.201108634 | es_ES |
dc.description.references | Derouane, E. G., Dillon, C. J., Bethell, D., & Derouane-Abd Hamid, S. B. (1999). Zeolite Catalysts as Solid Solvents in Fine Chemicals Synthesis. Journal of Catalysis, 187(1), 209-218. doi:10.1006/jcat.1999.2575 | es_ES |
dc.description.references | Fernández, A. B., Boronat, M., Blasco, T., & Corma, A. (2005). Establishing a Molecular Mechanism for the Beckmann Rearrangement of Oximes over Microporous Molecular Sieves. Angewandte Chemie, 117(16), 2422-2425. doi:10.1002/ange.200462737 | es_ES |
dc.description.references | Fernández, A. B., Boronat, M., Blasco, T., & Corma, A. (2005). Establishing a Molecular Mechanism for the Beckmann Rearrangement of Oximes over Microporous Molecular Sieves. Angewandte Chemie International Edition, 44(16), 2370-2373. doi:10.1002/anie.200462737 | es_ES |
dc.description.references | Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913 | es_ES |
dc.description.references | Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244 | es_ES |
dc.description.references | Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 28(3), 213-222. doi:10.1007/bf00533485 | es_ES |
dc.description.references | Ditchfield, R. (1974). Self-consistent perturbation theory of diamagnetism. Molecular Physics, 27(4), 789-807. doi:10.1080/00268977400100711 | es_ES |
dc.description.references | Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251-8260. doi:10.1021/ja00179a005 | es_ES |